Quantum Shockwaves: Classical and Quantum Channel Capacities

Aida Ahmadzadegan

Postdoctoral fellow

Department of Applied Mathematics,
University of Waterloo
Perimeter Institute for Theoretical Physics

In collaboration with:

Petar Simidzija
Achim Kempf
Eduardo Martin-Martinez

Classical sonic shockwave

Can we create a shockwave in the vacuum? Yes!

- □ Pre-timed emitters (Alices): Unruh-DeWitt detectors $[A_1,...,A_n]$ with a spherical spatial profile
- □ Superluminal: Spacelike separated emitters: $\Delta x^2 > \Delta t^2$
- □ Non-perturbative method: Delta in time coupling to the field

How to communicate with shockwave?

- ☐ Receiver Bob is timelike to Alices
- ☐ Alices encode their bit
- Protocol:
 - "0" by not coupling ($\lambda_A = 0$)
 - "1" by coupling $(\lambda_A \neq 0)$

- ☐ Bob couples to the field and measure his state. He **decodes:**
 - "1" if he measures $|e\rangle$
 - "0" if he measures $|g\rangle$

Classical channel capacity

Example:

- ☐ Initial state: 4 emitters (1 excited) 1 receiver
- Incoherent superposition:

$$\hat{\rho}_A = \frac{1}{4} (|eggg\rangle\langle eggg| + |gegg\rangle\langle gegg| + |ggeg\rangle\langle ggeg| + |ggge\rangle\langle ggge|)$$

Coherent superposition:

$$|\varphi\rangle = \frac{1}{\sqrt{4}} \left(e^{i\theta_1} |eggg\rangle + e^{i\theta_2} |gegg\rangle + e^{i\theta_3} |ggeg\rangle + e^{i\theta_4} |ggge\rangle \right)$$

Classical channel capacity

arXiv:1811.10606 Ahmadzadegan et al.

☐ Result:

Entangling the emitters can be used to locally enhance the classical channel capacity of the shockwave

Quantum channel capacity: What is the fundamental mechanism?

- **□** Quantum channel capacity:
 - Number of qubits that A can send B per use of channel
- Prerequisite of sending quantum information: Sending entanglement

☐ Lower bound of QCC: Coherent information

$$QCC \ge C_I = \max\{0, S[\rho_B] - S[\rho_{\widetilde{A}B}]\}$$

• $S[\rho] = -\text{Tr } \rho \log_2 \rho$ Von-Neumann entropy

Constructing a quantum channel

☐ Setup:

SWAP gate between a qubit and a field?

☐ SWAP:

☐ How do we implement SWAP gate between qubit and field?

Qubit to Field SWAP gate

$$\phi_A := \lambda_{\phi} \int d^d x \, F(x) \phi(x, t_A)$$

$$\pi_A := \lambda_{\pi} \int d^d x \, F(x) \pi(x, t_A)$$

 \Box If $\lambda_{\phi}\gg 1$, first CNOT entangles A with almost orthogonal coherent field states:

$$\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)|0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle)$$

 \square If λ_{π} is tuned so that $\pi_A |\pm \alpha\rangle \approx \pm \frac{\pi}{4} |\pm \alpha\rangle$, then second CNOT disentangles A:

$$\frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle) \mapsto \frac{1}{\sqrt{2}}|+_{y}\rangle(|+\alpha\rangle - i| - \alpha\rangle)$$

Effect of the approximate SWAP gate

 \Box We need $\lambda_{\phi}\gg 1$ in order to get field into almost orthogonal superposition.

Need strong coupling to transmit quantum information

Where does quantum information propagate to in 3+1D?

Quantum information propagates on light-cone (strong Huygens principle).

$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B),$$

$$\pi[F](t_A) = \phi[F_3](t_B) + \pi[F_1](t_B),$$

Quantum information broadcasting?

- ☐ No cloning theorem: quantum state cannot be cloned.
- ☐ Can Alice broadcast a *small* amount of quantum info to multiple **nonidentical Bobs**?

Quantum information broadcasting?

Stronger coupling: perfect channel $(C_1 = 1)$ but need large receiver.

Conclusions

- Classical channel capacity:
 - Shockwaves concentrate the signal
 - Signal modulated by Alices' entanglement
- **□** Quantum channel capacity:
 - Use approximate SWAP gates to get information in and out of field
 - Nonperturbative calculations
 - Obtained lower bound from coherent information
 - No-cloning constraint requires beam shaping!
- Outlook: Beam shaping using quantum shockwaves and quantum MIMO

An algebraic QFT result

Definition:
$$\phi[F](t) \coloneqq \int d^d x \, F(x) \phi(x,t)$$
 and $\pi[F](t) \coloneqq \int d^d x \, F(x) \pi(x,t)$

We prove the following claim for any free field in any spacetime dimension:

Claim:

$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B),$$

$$\pi[F](t_A) = \phi[F_3](t_B) + \pi[F_1](t_B),$$

where

$$\widetilde{F_1}(k) = \widetilde{F}(k) \cos(\Delta|k|),
\widetilde{F_2}(k) = \widetilde{F}(k) \operatorname{sinc}(\Delta|k|) (-\Delta),
\widetilde{F_3}(k) = \widetilde{F}(k) \sin(\Delta|k|)|k|.$$

Here, $\Delta := t_B - t_A$ and \sim denotes Fourier transform.

Corollary: We can write SWAP⁻¹ in terms of observables at $t=t_B$. Problem solved!

How to calculate the shockwave?

☐ Energy flow of the shockwave:

$$\langle \psi | \widehat{U}^{\dagger}(t) : \widehat{T}_{00} : \widehat{U}(t) | \psi \rangle$$

Initial state :

$$|\psi\rangle = |\varphi\rangle_A|0\rangle_f; \qquad \mathbf{H}_A = \bigotimes_{i=1}^n H_{A_i}$$

Time evolution operator:

$$\widehat{U}(t) := e^{-i \widehat{H}_{I}^{(n)}(t_{(n)})\theta(t-t_{(n)})} \dots e^{-i \widehat{H}_{I}^{(1)}(t_{(1)})\theta(t-t_{(1)})}$$

Beyond Shockwaves

- ☐ Time reversed quantum shockwave:
 - Super focused emission becomes super focused reception
 - Super resolution powerExample: telescope or microscope
- ☐ Quantum MIMO
 - MIMO (Multiple In, Multiple Out) antennas
 - Directional emission (beam forming)
 - Improved channel capacity

Entanglement can increase both directionality and capacity beyond the classical MIMO

Classical channel capacity: Mathematical origin of larger capacity?

- ☐ Two contributions to the channel capacity:
 - Sensitive term to the initial states of Alices
 - Insensitive term: result of switching

$$\prod_{i=1}^{n} (\cosh(C_{Bi}) + \hat{\mu}_{i} \sinh(C_{Bi})) \propto f(C) + C_{1}\hat{\mu}_{n} + \dots + C_{2}\hat{\mu}_{1}\hat{\mu}_{n} + \dots + C_{3}\hat{\mu}_{1} \dots \hat{\mu}_{n}$$
switching Alice's initial state

$$C_{Bi} = \lambda_B \lambda_i \theta(t - t_i) \int d^3k \left(\alpha_{SB} \alpha_{Si}^* - \alpha_{SB}^* \alpha_{Si}\right)$$
 Number-valued function

What is the mathematical origin of concentrated signal?

- ☐ Two contributions to the shockwave:
 - Sensitive term to the initial states of Alices
 - Insensitive term: result of switching

$$\widehat{U}^{\dagger}(t):\widehat{T}_{00}:\widehat{U}(t) \propto \sum_{i=1}^{n} \underbrace{(f(C) + C_1 \hat{\mu}_n + C_2 \hat{\mu}_1 \hat{\mu}_n + C_3 \hat{\mu}_2 \hat{\mu}_n + \cdots)}_{\text{switching}}$$
switching Alices' initial state

Can we create a shockwave in the vacuum?

☐ Yes

Sequence of pre-timed emitters that go off faster than speed of light

Classical Shockwave

☐ Can it get stronger using a quantum effect?

Entangling the emitters

☐ Comparison:

- Choice of the emitters' entanglement modulates the energy density
- In some areas the amplitude is enhanced and more concentrated

