Black Holes, Causal Order, and Quantum Entanglement

Robert B. Mann University of Waterloo, Canada

Abstract

Entanglement harvesting is an operational way to transfer correlations from the quantum vacuum to (idealized) detectors. As such, it provides a new probe of the structure of spacetime via quantum correlations. This becomes particularly interesting when the spacetime has curvature, and even more so if a black hole or a moving mirror is present. A variety of new phenomena occur, including asymmetric time-shift effects, separability islands in parameter space, entanglement inhibition, and sensitivity to topology. Particularly interesting effects take place if the detectors are in a superposition of indefinite causal order. I shall provide an overview of an ongoing research program in this area along with a description of these and other novel results.