Magnon Kerr effect in a strongly coupled cavity-magnon system

J. Q. You (游建强)

Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center (CSRC), Beijing 100193 Email: jqyou@csrc.ac.cn

Supported by the National Natural Science Foundation of China & the National Key Research and Delevelopment Program of China

The 8th International Workshop on Solid-State Quantum Computing Dec. 12-15, 2016, Taiwan

Outline

- Introduction
 - Spin waves (magnons)
- Cavity quantum electrodynamics (QED) with magnons
 D. Zhang *et al.*, npj Quantum Information 1, 15014 (2015).
- Magnon Kerr effect in a cavity QED system Y.P. Wang *et al.*, Phys. Re. B 94, 224410 (2016).
- Conclusions & Outlook

Spin waves (magnons)

Landau-Lifshitz equation

$$\frac{d}{dt}\vec{M} = -\gamma\mu_0\vec{M}\times\vec{H}_{\rm eff} + T_{\rm D}$$

+ Maxwell equations

- Robust extended spatial mode
- High spin density $10^{21} 10^{22} \text{ cm}^{-3}$

M. Cottam and D. Tilley, *Introduction to surface and superlattice excitations* (IoP, 2004).

Quantum theory for spin waves in the long-wavelength limit

Magnetostatic wave

Magnetic dipolar interactions (dominating) Exchange interactions (ignored) $\Lambda k^2 \Box 1$, $\Lambda =$ exchange constant

- Ferromagnetic resonance (FMR) mode (Kittel mode; uniform precession mode)
- Magnetostatic (MS) modes
 (Non-uniform precession modes)

L.R. Walker, J. Appl. Phys. 29, 318 (1958).

FMR mode in ferromagnetic sphere:

 $f_{\rm m} = \frac{\gamma_{\rm e}}{2\pi} |\vec{B}_0| + f_{\rm m,0}$ $\frac{\gamma_{\rm e}/2\pi = 28 \text{ GHz/T}, \text{ electron gyromagnetic ratio}}{f_{\rm m,0} < 10 \text{ MHz}, \text{ determined by anisotropy field}}$

YIG = yttrium iron garnet (Y3Fe5O12)

Quantum magnonics

Recently reported experimental results on YIG sphere in cavity

H. Huebl et al., Phys. Rev. Lett. 111, 127003 (2013).

Number of spins $N(10^{18} \text{ spins})$ g_m/2π (MHz) 150 0 0.3 1 2 4 10 12 6 10.7 Transmission coefficient $Re(S_{21})$ d=1.0 mm (2Hz) 10.6 10.5 0.2 Coupling strength <u>=</u> 901 0.75 mm 80 Cavity mode gm 10.5 0.5 mm 40 🧉 0.4 mm 0.3 mm 10.4 0.0 0.0 0.2 0.4 0.6 0.8 2 3 -4 -3 -2 -1 0 1 4 Square root of volume $V^{1/2}$ (mm^{3/2}) Current / (mA)

Y. Tabuchi et al., Phys. Rev. Lett. 113, 083603 (2014).

X. Zhang et al., Phys. Rev. Lett. 113, 156401 (2014).

Single photon level

Outline

- Introduction
 - Spin waves (magnons)
- Cavity quantum electrodynamics (QED) with magnons
 D. Zhang *et al.*, npj Quantum Information 1, 15014 (2015).
- Magnon Kerr effect in a cavity QED system Y.P. Wang *et al.*, Phys. Re. B 94, 224410 (2016).
- Conclusions & Outlook

Yttrium-iron-garnet (YIG, Y₃Fe₅O₁₂)

- Ferrimagnetic insulator
- Narrow FMR linewidth
- Transparent at infrared
- High Curie temperature: \sim 550 K
- Large spin density: 4.2×10^{21} cm⁻³

Classic applications:

- Oscillator/ Filter
- Isolator/ Circulator

3D rectangular copper cavity

Two ports

Cavity size: $50 \times 18 \times 3 \text{ (mm}^3)$

YIG diameter: 0.32 mm

S_{21} spectrum of cavity with a YIG sphere @ 22 mK

S_{21} @ cryogenic temperature (Cryo., 22 mK)

@ 22 mK average thermal photon number $\sim 1 \times 10^{-2}$

S₂₁ @ room temperature (R. T., 300 K)

@ 300 K average thermal photon number ~ 700

The MS mode related anti-crossing has disappeared.

S_{21} spectrum – Input-output theory

$$S_{21}(\omega) = \frac{2\sqrt{\kappa_{\rm i}\kappa_{\rm o}}}{i(\omega - \omega_{\rm c}) - \kappa_{\rm tot} + \sum_{\rm c}(\omega)},$$

$$\sum(\omega) = \frac{\tilde{g}_{\rm FMR}^2}{i(\omega - \omega_{\rm FMR}) - \gamma_{\rm FMR}} + \frac{\tilde{g}_{\rm MS}^2}{i(\omega - \omega_{\rm MS}) - \gamma_{\rm MS}}$$

Coupling strength $\tilde{g}_m \ (m = \text{FMR}, \text{MS})$ Total cavity decay rate $\kappa_{\text{tot}} = \kappa_{\text{i}} + \kappa_{\text{o}} + \kappa_{\text{int}}$ Magnon mode damping rate $\gamma_m \ (m = \text{FMR}, \text{MS})$

Strong coupling
$$\tilde{g}_{m} > \kappa_{tot}, \gamma_{m}$$

Cooperativity $C \equiv \tilde{g}_{m}^{2} / \kappa_{tot} \gamma_{m} > 1$

Parameters extracted by fitting with the experiment

Room temperature

Temp.	Mode	$ ilde{g}_{ m FMR}, ilde{g}_{ m MS}$ (/2 π MHz)	κ _{tot} (/2π MHz)	γ _{fmr} , γ _{ms} (/2π MHz)	C _{FMR} , C _{MS}
Cryo.	TE ₁₀₁	5.1, 1.4	1.1	1.2, 2.7	22.1, 0.7
(22 mK)	TE ₁₀₂	7.5, 8.3	2.4	1.3, 3.3	18.0, 8.7
R. T.	TE ₁₀₁	5.2	2.5	1.3	8.3
(300 K)	TE ₁₀₂	9.6	5.9	1.5	10.4

Comparison with simulations

Cryogenic temperature

Room temperature

For the MS mode, the damping rate is increased two orders from Cryo. to R.T.

Outline

- Introduction
 - Spin waves (magnons)
- Cavity quantum electrodynamics (QED) with magnons
 D. Zhang *et al.*, npj Quantum Information 1, 15014 (2015).
- Magnon Kerr effect in a cavity QED system Y.P. Wang *et al.*, Phys. Re. B 94, 224410 (2016).
- Conclusions & Outlook

Experimental setup

Temperature: 22 mK

The YIG sphere is placed at the site where the magnetic field of the cavity mode TE102 is maximal (as before).

Newly added:

The YIG sphere can be directly pumped by a drive field.

Cavity QED system with magnon Kerr effect

$$\begin{array}{ll} \text{Total Hamiltonian:} & H = H_{\rm c} + H_{\rm m} + H_{\rm int} + H_{\rm d}. \\ \\ \text{Here } H_{\rm c} = \omega_{\rm c} a^{\dagger} a & H_{\rm m} = -\gamma B_0 S_{\rm z} - \frac{\mu_0 \gamma^2 K_{\rm an}}{M^2 V_{\rm m}} S_{\rm z}^2 \longleftarrow \begin{array}{l} \text{Magnetocrystalline} \\ \text{anisotropic energy} \end{array} \\ \\ H_{\rm int} = g_{\rm s} (S^+ + S^-) (a^{\dagger} + a) \equiv 2g_{\rm s} S_x (a^{\dagger} + a) \\ \\ H_{\rm d} = \Omega_{\rm s} (S^+ + S^-) (e^{i\omega_{\rm d} t} + e^{-i\omega_{\rm d} t}) \equiv 4\Omega_{\rm s} S_x \cos(\omega_{\rm d} t) \end{array}$$

Holstein-Primakoff transformation:

$$S^{+} = \left(\sqrt{2S - b^{\dagger}b}\right)b, \quad S^{-} = b^{\dagger}\left(\sqrt{2S - b^{\dagger}b}\right), \qquad S_{z} = S - b^{\dagger}b$$

For the low-lying excitations with $\langle b^{\dagger}b\rangle/2S \ll 1$, $S^{+} \approx b\sqrt{2S}$, $S^{-} \approx b^{\dagger}\sqrt{2S}$.

In the rotating-wave approximation, the total Hamiltonian of the coupled hybrid system becomes

$$H = \omega_{\rm c} a^{\dagger} a + \omega_{\rm m} b^{\dagger} b + K b^{\dagger} b b^{\dagger} b + g_{\rm m} (a^{\dagger} b + a b^{\dagger}) + \Omega_{\rm d} (b^{\dagger} e^{-i\omega_{\rm d} t} + b e^{i\omega_{\rm d} t}),$$

 $K = \mu_0 K_{\rm an} \gamma^2 / (M^2 V_{\rm m})$

Kerr effect of magnons owing to the magnetocrystalline anisotropy.

Kerr-effect-induced frequency shifts

In the dispersive regime, when considerable magnons are generated by a drive field, the effective Hamiltonian of the system is

$$H_{\text{eff}} = \left[\omega_{\text{c}} + \frac{g_{\text{m}}^2}{\Delta} + \frac{2g_{\text{m}}^2}{\Delta^2}K\langle b^{\dagger}b\rangle\right]a^{\dagger}a + \left[\omega_{\text{m}} - \frac{g_{\text{m}}^2}{\Delta} + \left(1 - \frac{2g_{\text{m}}^2}{\Delta^2}\right)K\langle b^{\dagger}b\rangle\right]b^{\dagger}b + \Omega_{\text{d}}'(b^{\dagger}e^{-i\omega_{\text{d}}t} + be^{i\omega_{\text{d}}t}),$$

$$\Omega_{\rm d}' = \left[1 - \frac{1}{2(\omega_{\rm c} - \omega_{\rm d})} \left(\frac{g_{\rm m}^2}{\Delta} + \frac{2g_{\rm m}^2}{\Delta^2} K \langle b^{\dagger} b \rangle\right)\right] \Omega_d,$$

where $\Delta = \omega_{\rm c} - \omega_{\rm m}$.

Kerr-effect-induced shift of the central cavity frequency:

$$\Delta_{\rm c} = (2g_{\rm m}^2/\Delta^2) K \langle b^{\dagger}b \rangle$$

Kerr-effect-induced shift of the magnon frequency:

$$\Delta_{\rm m} = (1 - 2g_{\rm m}^2/\Delta^2) K \langle b^{\dagger}b \rangle \approx K \langle b^{\dagger}b \rangle$$

Kerr-effect-induced frequency shifts vs. Drive power

Kerr-effect-induced shift of the central cavity frequency:

$$\Delta_{\rm c} = (2g_{\rm m}^2/\Delta^2) K \langle b^{\dagger}b \rangle$$

Kerr-effect-induced shift of the magnon frequency:

$$\Delta_{\rm m} = (1-2g_{\rm m}^2/\Delta^2) K \langle b^\dagger b \rangle \approx K \langle b^\dagger b \rangle$$

Therefore, it is predicted that the shift of the central cavity frequency should have a *similar behavior* as the frequency shift of the Kittle mode.

Magnon frequency shift vs. Drive power

Using a Langevin approach, we obtain *the relation between the magnon frequency shift and the drive power*.

$$\left[\Delta_{\rm m}^2 + \left(\frac{\gamma_{\rm m}}{2}\right)^2\right] \Delta_{\rm m} - cP = 0$$

- The experimental results for the Kittel mode agree well with this relation (derived for an uniformly magnetized YIG sphere).
- The experimental results for the MS modes deviate from this relation, which confirms the deviations of the MS modes from homogeneous magnetization.

Conclusions

Experimental study of a cavity QED with magnons at both cryogenic and room temperatures.

- Robustness of the FMR mode against temperature.
- A drastic increase of the damping rate of the MS mode from cryogenic to room temperature.

Experimental demonstration of the magnon Kerr effect in a cavity QED system

- Kerr-effect-induced shift of the central cavity mode & Kerr-effect-induced magnon frequency shift.
- The experimental results for the Kittel mode agree well with the analytical relation between the magnon frequency shift and the drive power.

Outlook: Quantum magnonics & solid-state hybrids

- Ultrastrong coupling of magnons to photons
- Tim-domain properties of magnons
- Demonstrate non-classical states of magnon mode
- Coupling with qubits (single transmon qubit, U. of Tokyo/RIKEN group, Science, 2015).
- More nonlinear effects (bistability, chaos)
- BEC with magnons?

Main Collaborators:

CSRC: Dengke Zhang, Yi-Pu Wang (experimental) & Guo-Qiang Zhang (theoretical)

Tie-Fu Li (Tsinghua & CSRC), Franco Nori (*RIKEN/Univ. of Michigan*)

& Can-Ming Hu (Univ. of Manitoba)

Thank you for your attention!

Hybrid quantum systems

Kurizki *et al.,* "Quantum Technologies with Hybrid Systems" *PNAS*, 2015; Xiang *et al.,* "Hybrid quantum circuits", Rev. Mod. Phys. 2013.

Magnetic resonance

Resonant frequency

Nuclear magnetic resonance (NMR)

Paramagnetic materials

Electron paramagnetic resonance (EPR) ---Electron spin resonance (ESR)

Ferromagnetic material

Ferromagnetic resonance (FMR)

Ferrimagnetic resonance (FiMR)

Antiferromagnetic resonance (AFMR)

<u>Radio-frequency</u>

<u>Microwave</u>

<u>Microwave</u> <u>Microwave — Far infrared</u> <u>Microwave — Far infrared</u>

Measurement setups

Bluefors cryo-free dilution refrigerator: Base temperature 7mK

S_{21} spectra of cavity without a YIG sphere

TE₁₀₁: $\kappa_{i,1}/2\pi = 0.19$ MHz; $\kappa_{o,1}/2\pi = 0.20$ MHz TE₁₀₂: $\kappa_{i,2}/2\pi = 0.85$ MHz; $\kappa_{o,2}/2\pi = 0.99$ MHz

Experimental parameters

Temp.	Mode	Input power (dBm)	Input photon number	Thermal photon number
Cryo. (22 mK)	TE ₁₀₁	-130 -100	0.8	~1×10 ⁻²
	TE ₁₀₂	-130	0.7	~1×10 ⁻²
R. T.	TE_{101}	-20	1.8×10 ¹⁰	705
(300 K)	TE_{102}^{101}	-20 /	$1.1 imes 10^{10}$	606

Quantum limit is reached at ~22 mK.

Question: Strong magnon-photon coupling was reached @ R. T. for the MS mode?

The 3D cavity containing a YIG sample

The 3D cavity has inner dimmensions: $44.0 \times 20.0 \times 6.0 \text{ mm}^3$

The diameter of the YIG sphere: 1mm