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p @ Register outcomes
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Device-Independent Quantum Information

Quantum experiment

measurement settings: €,y Device-independent paradigm

:
M

measurement outcomes: a,b

@ Drop assumptions on devices

Y
; @ Keep label of measurement settings
a by x, y; and outcomes by aand b
@ Goal: use correlation {P(a, x|x,y)}
; to learn something nontrivial about p
b and the measurements
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P(alx,y) = Z P(a.blx,y) => P(ablx,y') = P(alx,y'), Yy # '
b

(blx,y) = ZP (ablx,y) =Y P(a blx,y) = P(blx',y), ¥V x # X
a

Physical significance:

@ Probability distribution cannot be affected by each other’s
measurement choice

@ If violated, we can use the difference in correlations to
send signals faster than light
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The problem

Statistical fluctuations due to finite statistics

An ideal coin,
Pldea|(H) - O~5; PIdeaI(T) =05

In experiment, correlation is estimated by:

Pors(H) = =7, Pous(T) =

@ Due to finite statistics, Pos # Piea
@ When sample size (N) — 0o, Poys — Pea

@ The same kind of deviation applies to the observed
distribution Poy(a, b|x, y) and the ideal quantum
distribution Po(a, b|x, y)
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The problem

Dealing with the difference between theory and practice

@ In experiment, due to finite statistics,

_ N(aa bv Xa y)
Poss(a, blx, y) = W
violates the non-signaling condition, even if equipped with

ideal setup

@ Device-independent quantum information (DIQI) utilizes
only the correlations, P(a, b|x, y), to arrive at conclusions

@ Theoretical tools developed for DIQI assume that

P(a, b|x, y) obeys the non-signaling condition
@ A gap between raw experimental data and theoretical tools
@ Our goal: To bridge this gap
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Details

Simulating quantum experiment

@ Ideal Pg(a, blx, y) = tr (Max @ My, p)
o Experimental data, Py (a, b|x, y) = %
@ Numerical simulation:
o Consider different Pg, e.g., PSS"
o Simulate the outcomes of the experiment
according to Pg
[Sample size, e.g., 10, 102, ... 10'°]
o Estimate Pop,
e Post-process Pop to obtain PP . satisfying
the non-signaling conditions

Signaling subspace

ﬁobs.
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@ Nearest quantum approximation® (NQA)
o ||Pg, — Pops||L, is minimal

© Minimizing Kullback-Leibler (<) divergence®,
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"Renou et al., arXiv:1610.01833
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3Zhang et al., PRA (2013)
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Details

Testing against desired features

Criteria:

@ Uniqueness :
o Given Poy, is PP, unique?

© Convergence :
o How quickly does P _, converge to P as sample size

increases?

© Membership :
o How likely is PP . in Q?
e Measure the probability of lying in Q,*°

4Navasr:ués et al., PRL (2007)
5Morder etal., PRL (2013)
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Membership criterion-PSHsH
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@ Finite statistics leads to “signaling” correlations, it's
unavoidable even if equiped with perfect system.

@ A gap between experimental data and usage of theoretical
tools, due to violation of the non-signaling condition.

method & Desicersta | NQA | Projection | KL divergence

Uniqueness v v v
Convergence | v (?) v v
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