NS-secure Physical Randomness Extractors, or Randomness Amplification for Weak Source

Kai-Min Chung

Academia Sinica & NCTU, Taiwan

Joint work with Yaoyun Shi, and Xiaodi Wu

Original Motivation from 90's

- Randomness is extremely useful resource
 - Randomized algorithm, Distributed algorithm, Cryptography,...

- Typically assume perfect uniform sources
 - Unbiased, independent random bits
 - Unrealistic strong assumption

- Can we weaken the assumption?
 - Use unstructured weak sources with min-entropy

Randomness Extraction Paradigm

- Extract uniform randomness from weak random sources
 - Source = classical distribution over {0,1}ⁿ
 - Correlated and biased (unstructured), guarantee min-entropy

- Impossible given a single such source
 - Even with n-1 bits of entropy

Classical Seeded Extractors [NZ96]

Add short uniform seed as catalyst for extraction

 (k,ε) -extractor:

X has \geq k-bits min-entropy \Rightarrow Ext(X,U_d) ε -close to uniform

Pervasive Applications

- Diverse topics in Theoretical Computer Science
 - Cryptography, Derandomization [Sis88, NZ93,...], Distributed algorithms [WZ95], Data structures [Ta02], Hardness of Approximation [Zuc93,...]
- Many applications in Cryptography
 - Bounded-storage model [Lu02,V03], PRG [HILL89], Biometrics [DRS04], Leakage-resilient crypto [DP09]...
- Also in Quantum Cryptography
 - Privacy amplification [BBR88], Randomness expansion,
 Physical randomness extractors,...

Avoiding Uniform Seed

• Multi-source extractor: use multiple *indep*. sources

 (t,k,ε) -multi-source extractor:

 X_i has $\geq k$ -bit entropy $\implies Ext(X_1,...,X_t) \varepsilon$ -close to uniform

Can We Remove Independence?

- Cannot be verified & don't know how to guarantee
- Device-independent Extractors
 - Extract randomness from physical sources without trust

Can We Remove Independence?

- Cannot be verified & don't know how to guarantee
- Device-independent Extractors
 - Extract randomness from physical sources without trust
 - Randomness expansion: seeded setting
 - Still require uniform seed and independence
 - Randomness amplification: Santha-Vazirani (SV) source
 - Structured source with high min-entropy
 - Require source-device conditional independence
- Does randomness extraction remain feasible without any *independence* or *structural* assumptions?

Physical Randomness Extractor (PRE)

- DI extraction for general weak source
- Quantum-secure PRE [CSW14]
 - Only require O(1) bits min-entropy; minimal assumptions!
- No-signaling-secure PRE [CSW15]
 - Physics motivation [CR12,GMT+13]: a dichotomy theorem

Dichotomy Theorem [CR12,GMT+13]

- Can we certify our physical world is random?
 - NO if the world is fully deterministic
- Dichotomy: either deterministic, or certifiably random
 - "Not fully deterministic"
 - \Rightarrow \exists certification procedure for truly random events
 - Do not want to assume quantum mechanics
 - Do not want to assume independence
- NS-secure PRE = cert. procedure assuming NS condition
 - "Not fully deterministic" = ∃ unstructured min-entropy source
- Randomness amplification (SV source)
 [CR12,GMT+13,BRG+13,RBH+15]
 - "Not fully deterministic" = structured, per-bit uncertainty with conditional independence

NS-secure PRE: The Model

The Model

- Source-Device-Eve system: $P_{XO_1...O_tO_E|\perp M_1...M_tM_E}$
 - Only model one-time use of the devices
- Assumptions:
 - $-P_{XO_1...O_tO_E|\perp M_1...M_tM_E}$ is no-signaling.
 - (X|Device) has k-bit min-entropy: $P_{guess}(X|Device) \le 2^{-k}$
- Output-Source-Eve system: $P_{ZBXO_E|\perp\perp\perp\perp M_E}$
 - Z: output bit, B ∈ {Acc, Rej} : decision bit

(k,ε) -NS-secure PRE

- Completeness: accept honest devices with high prob.
- Soundness: For any $P_{XO_1...O_tO_E|\perp M_1...M_tM_E}$
 - (X | Device) has $\geq k$ -bits min-entropy
 - \Rightarrow Z is ε -close to uniform-to-(X, Eve):

i.e., $P_{ZBXO_E|\perp\perp\perp\perp M_E}$ and $P_{Z'BXO_E|\perp\perp\perp\perp M_E}^{Ideal}$ are ε -close

Eve

Comparison of the Models

- Colbeck, Renner [CR12]
 - high quality SV; no independence requirement, i.e.,

$$P_{guess}(X_i | Device, X_1 = x_1, ..., X_{i-1} = x_{i-1}) < 0.558$$
 $\forall x_1, ..., x_{i-1}$

- Gallego et. al. [GMT+13]
 - need cond. independence between Source & Device
 - handle any SV
- Brandão et. al., Ramanathan et. al. [BRG+13,RBH+15]
 - need cond. independence between Source & (Device + Eve)
 - O(1) devices

Our Results

- We construct (k,ε) -NS-secure PRE for any $\varepsilon > 0$ with
 - min-entropy $k = poly(1/\epsilon)$
 - # devices = $2^{\text{poly}(1/\varepsilon)}$

Robust: accept w.h.p. ever.

World record high!
OK for Dichotomy Thm

Our Construction

Our Approach: Make Source Uniform First!

Challenge 1: Somewhere Uniform Source

Challenge 1: Somewhere Uniform Source

- Need: some Y_i is close to uniform-to-Device_i
- Quantum security:
 - Use quantum-proof strong seeded extractor: $Y_i = Ext(X,i)$
 - ∃ i s.t. Y_i is ε -close to uniform-to-*all-Device*

Challenge 1: Somewhere Uniform Source

- Need: some Y_i is close to uniform-to-Device_i
- Quantum security:
 - Use quantum-proof strong seeded extractor: $Y_i = Ext(X,i)$
 - $-\exists i \text{ s.t. } Y_i \text{ is } \varepsilon\text{-close to uniform-to-} all-Device$
- NS security:
 - "NS-proof" strong seeded extractor does NOT exist!
 - \exists source $P_{XO_E|\perp M_E}$ with (n-1)-bit min-entropy s.t. all extractors fails
 - Still, classical strong extractor \rightarrow NS somewhere uniform source!
 - $\exists i \text{ s.t. } Y_i \text{ is } (2^m \cdot \varepsilon) \text{-close to uniform-to-} Device_i$

Challenge 2: Seeded PRE as Decoupler

• Need: If Source is uniform-to-Device,

then Output is uniform-to-all-but-Device

Challenge 2: Seeded PRE as Decoupler

- Need: If Source is uniform-to-Device,
 then Output is uniform-to-all-but-Device
- Quantum security:
 - Equivalence lemma: any randomness expansion protocol is a good decoupler
- NS security:
 - No equivalence lemma
 - Use randomness amplification protocol of [GMT+13]
 - But not robust and not explicit
 - We make it robust and explicit in seeded setting
 - Simplify and modularize the proof

Challenge 3: Composition

• Somewhere uniform Y_i only ε -close to uniform-to- $Device_i$

Challenge 3: Composition

- Somewhere uniform Y_i only ε -close to uniform-to- $Device_i$
- Quantum security:
 - Handled by a standard fidelity trick
- NS security:
 - No fidelity trick
 - Look into our seeded PRE construction and analysis
 - Show: if *analysis fails*, then \exists distinguisher w/ advantage > ε

Somewhere Uniform Source

Somewhere Uniform from Classical Ext

Thm: If Ext is classical (k,ε) -strong seeded extractor, and (X|Device) has k-bits min-entropy,

Then \exists i s.t. Y_i is $(2^m \cdot \varepsilon)$ -close to uniform-to-*Device*

Proof: Let $P_{XO_1...O_t|\perp M_1...M_t}$ denote the Source-Device system.

- Suppose Thm is false, then $\forall i, \exists$ distinguisher D_i s.t.
 - D_i distinguishes $P_{Y_iO_i|M_i}$ from $P_U \otimes P_{O_i|M_i}$ with advantage $> 2^m \cdot \varepsilon$

Somewhere Uniform from Classical Ext

```
Thm: If Ext is classical (k,\varepsilon)-strong seeded extractor, and (X \mid Device) has k-bits min-entropy,

Then \exists i \text{ s.t. } Y_i \text{ is } (2^m \cdot \varepsilon)-close to uniform-to-Device_i.
```

Proof: Let $P_{XO_1...O_t|\perp M_1...M_t}$ denote the Source-Device system.

- Suppose Thm is false, then $\forall i, \exists$ distinguisher D_i s.t.
 - D_i distinguishes $P_{Y_iO_i|M_i}$ from $P_U \otimes P_{O_i|M_i}$ with advantage $> 2^m \cdot \varepsilon$
 - Here, D_i can choose measurement M_i depending on Y_i / U
- By a post-selection argument, \forall i, \exists distinguisher D'_i s.t.
 - D'_i distinguishes $P_{Y_iO_i|M_i}$ from $P_U \otimes P_{O_i|M_i}$ with advantage $> \varepsilon$
 - D'_i chooses measurement M_i independent of Y_i / U
- $-\{D'_i\}$ as guessing strategy $G(Device) \rightarrow classical distribution <math>O$
 - (X|O) has k-bits min-entropy, so $E_i[|P_{Y_iO} P_U \otimes P_O|] \leq \varepsilon$
- This is a contradiction!

Seeded PRE as Decoupler

Construction Overview

Why Does It Work? (1)

Strong monogamy

- If Device play BHK^K "well", then A must random-to-Eve (monogamy)
- Furthermore, for most H,
 H(A) close to uniform-to-Eve
 (deterministic extraction)
 - distance ≤ $C \cdot \langle P_{AB|XY} | BHK^K \rangle$
- Need to use different devices!
- First done in [M09], we make it explicit by T-wise indep hash

Why Does It Work? (2)

Testing devices

- Challenge: need to analyze $\langle P_{A_RB_R|X_RY_R,Acc}|BHK^K\rangle$
 - since only output when Acc
- Bound it by $\langle P_{A_RB_R|X_RY_R} | BHK^K \rangle$
 - Need to use different devices!
 - Use NS condition among rounds.
- First done in [GMT+13] we make it robust, and make proof simpler & modular

Composition: Handle Close to Uniform Seed

Handle Close to Uniform Seed

• Key claim in the analysis of seeded PRE:

$$\Pr[\text{Acc } \land \langle P_{A_R B_R | X_R Y_R, \text{Acc}} | \text{BHK}^K \rangle \geq \gamma] \leq \varepsilon$$

• If claim is false when X is ε -close to uniform-to-Device

$$\Pr[\text{Acc} \land \langle P_{A_R B_R | X_R Y_R, \text{Acc}} | \text{BHK}^K \rangle \geq 2\gamma] > 2\varepsilon$$

then \exists D distinguish (X, Device) from U \otimes Device w/ adv > ε

• Thus, $\Pr[\text{Acc } \land \langle P_{A_RB_R|X_RY_R,\text{Acc}} | \text{BHK}^K \rangle \ge 2\gamma] \le 2\varepsilon$ and the rest of analysis go through.

Put Things Together

On the Number of Devices

- Need exponential number of devices
 - In seeded PRE, need seed length $m = 1/poly(\varepsilon)$
 - # somewhere uniform blocks $\geq 2^{m}$
 - since we need classical seeded extractor with error $\varepsilon/2^{\rm m}$
 - \Rightarrow need $2^{1/\text{poly}(\varepsilon)}$ devices
- Can we do better?
 - $1/poly(\varepsilon)$ devices assume Source-Device independence
 - $\omega(1)$ devices needed for "non-adaptive" protocols (on going work)

Open Problems

- Better NS-secure PRE / randomness amplification
 - General source, no independence, $1/poly(\varepsilon)$ devices?
 - SV source, no independence, O(1) devices?
 - NS-secure randomness expansion?
- PRE with negligible error
 - Important for crypto applications
 - Only known for randomness expansion [MS14]
 - Open even for SV source with quantum security
- Can we certify independence w/o cert. uniform?

Crypto against Quantum Side-Info: Randomness Extraction in Malicious Setting

- Many crypto tasks can be viewed as randomness extraction in malicious settings
 - Seeded and multi-source extractors
 - Privacy amplification, non-malleable extractors
 - Network extractors
 - Leakage-resilient cryptography, etc
- Can we achieve security against quantum side info

We welcome visitors! AQIS 2016 in Taiwan

16th Asian Quantum
Information Science
Conference

Academia Sinica, Taipei, Taiwan Aug 29 - Sep 2, 2016 (Tutorials: Aug 28)

(Main Conference: Month Day-Day)

AMO Summer School: Aug 23 - 28

Privacy Amplification with Man-in-the-Middle (MIM) Adversary

- Eve holds side info E about X & launch MIM attack
 - Can arbitrarily modify, insert, delete, and reorder message
- Well-studied problem classically [MW97,DW09,RW03, KR09,CKOR10,DLWZ11,CRS12,Li12,Li15]
- Motivate quantum-proof non-malleable Ext

Cryptography w/ Imperfect Randomness

- Strong impossibility [DOPS04]
 - Encryption, commitment, two-party computation, etc.
- If ≥ 2 indep sources available \Rightarrow multi-source Ext
- Multi-party computation
 - Each party has single privacy weak source
 - Classically, solved by network extractor protocols
 - Weak feasibility in I.T setting [KLRZ08]
 - Strong feasibility in comp. setting [KLRZ08,KLR09]
 - Quantum-proof network extractors
 - We made some progress, but widely open

Thank you! Questions?

