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The question

Can we generate provable
random numbers?

10110111101101000010010001111101001001001001111010100 ....




Why It matters

Security of protocols like RSA breaks down if randomness is bad.
[Lenstra+ 12, Heninger+ 12]
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Existing solutions

NIST DRAFT Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit
Generation

Elaine Barker
John Kelsey

Computer Security Division
Information Technology Laboratory

COMPUTER SECURITY

August 2002
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“[We assume] that the
developer understands the
behavior of the entropy source
and has made a good-faith
effort to produce a consistent
source of entropy.”

Can we generate randomness
without assuming good faith?




Quantum random number generation

@trusted-device randomness expansio)

e Untrusted-device randomness amplification

e Semi-device-independent random number generation.

e (Contextuality-based randomness expansion.

e Randomness extraction.




Quantum random number generation

@trusted-device randomness expansiD

Small uniformseed + untrusted device -> uniform randomness

101011110110001001101100
l . 1111011001101111011111111
00111011 10100001010001001111110
10101010111010101010 ....

Only assumption: Non-communication.
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The challenge of the entangled adversary

Quantum information can be locked — accessible only to entangled
adversaries. [E.g., DiVincenzo+ 04]
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arguments (e.g., Azuma’s
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Timeline
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We proved full security,
with error-tolerance >1.4%.

Method: Constraints on
X|-> Tr[Xx=]

for adversary-output

states.
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Current Result




(taken from

The spot-checking protocol
P gp Coudron-Vidick-Yuen 2013)

Let G = nonlocal game, a = fixed input.

1. Runthe device N times. During
"game rounds,” play G. Otherwise,
just input a.

Game rounds
occur with
probability o.

0 0
0 0
1 1
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0

2. If the average score during game
rounds was < C, abort.

3. Otherwise, apply randomness
extractor.




The SpOt'CheCklng prOtOCO Let WG,a = optimal score among
devices that are deterministic on a.

Let G = nonlocal game, a = fixed input.

Thm (CVY 13): The protocol is
secure against an unentangled
adversary if C> W ..

1. Runthe device N times. During
"game rounds,” play G. Otherwise,
just input a.

. Ifthe average score during game Thm (MS 15): The protocol is

rounds was < C, abort. secure against any adversary if
C>Wg..

. Otherwise, apply randomness
extractor. Best possible!




How much randomness (MS 15)

‘ noise threshold vs.
# of random bits per round

We

~ 2.88(z — Wa.a)?
 |output| — 1




Proof Techniques




A Mathematical Preliminary

Consider the function f(X) = Tr [ | X| 1*¢].

- If X'is a density operator, f measures how deterministic X
is. (Smaller = more random.)

- fis “almost” a norm on Hermitian operators.




A Mathematical Preliminary

The function Tr [ | X]|1*¢] is uniformly convex. [Ball+ 94]




A Mathematical Preliminary

Consequence [MS 15]: Suppose ¢ |—> ¢’ is the result of a binary

measurement. ¢f _ b+ UpU*

Gap =increase
in randomness.

The more disturbance caused by a measurement, the more
randomness it adds.
Call this the (1+&)—uncertainty principle.




How do we prove security for this protocol?

Let G = nonlocal game, a = fixed input.

1. Runthe device N times. During
"game rounds,” play G. Otherwise,
just input a.

0 0
0 0
1 1
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0

2. If the average score during game
rounds was < C, abort.

3. Otherwise, apply randomness
extractor.




A starting point:

Suppose 7w is a function such that any
device satisfies

H ( output | input = a) >=
(P (win))

Prop (easy): In the non-adversarial
IID case, the protocol produces at

least T ( C) N extractable bits.

T = “simple rate curve”




What about non-11D?

Compare:
* von Neumann entropy (H)
* Renyi entropy (H,,,).

H,.. proves extractable bits in the non-IID case!
But it’s hard to relate to the winning probability.




What about non-11D?

Compare:
* von Neumann entropy (H)
* Renyi entropy (H,,,).

H,.. proves extractable bits in the non-IID case!
But it’s hard to relate to the winning probability.

Def: the (1+¢)-winning probability of a device is

Tr[pl—f—e]

win

Tr[pl-i—e]

where p = adversary’s state.




What about non-11D?

Def: 1t is a strong rate curve for the game G on input 1

a if for all devices D, —

H,.. (output oninput a | adversary )
is greater than or equal to
7 (Pys (Win )) - O ey ina (€).
Thm [MS 15]: If  is a strong rate curve, then the

spot-checking protocol produces N - 7t (C) extractable
bits. (N = # of rounds, C = noise threshold.)




How do we prove strong rate curves?

Pre-apply the
measurement
forinput a.

Want: High P, (win ) implies high H

1+ 1+e°

Create a new device by pre-measuring w/ input a. - * ) @

If this brings the score down significantly, then a

significant amount of state disturbance has occurred. Piglwin) - vs. P (win) <= W,
(1+€&)—uncertainty principle says that randomness

was generated!

1+&E

have randomness.

Soif P_,(win) is significantly larger than W ., we




The universal rate curves

Thm: For any (G,a) the function

B 2.88(:[: — VVG,Q)2
~ |output| — 1

is a strong rate curve.




Example: The CHSH Game (2-player, binary)

Inputs | Score if outputs | Score if outputs
agree disagree

00

01

10

11

Best possible noise tolerance.
Alternate challenge: Increase the height!




Higher Rate Curves




Self-Testing with CHSH

The quantum device that achieves
the optimal CHSH score is unique
(state + measurements).

O 0

Inputs

Score if outputs
agree

Score if outputs
disagree

00

1

01

1

10

1

11




Self-Testing with CHSH

Why?

The only way to maximize the score on each input pairis to have a
maximally entangled state with measurements at an angle of /8
from one another:

Input o
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Self-Testing with CHSH

Why?

The only way to maximize the score on each input pairis to have a
maximally entangled state with measurements at an angle of /8
from one another:

Input 1




Self-Testing with CHSH

Every device w/ a near optimal score is approximately the
same as the optimal one.

O 0

?

The optimal device gives a perfect coin flip on input oo!
This implies a simple rate curve which approaches 1.




Self-Testing with CHSH

We prove a strong rate curve for CHSH (MS 14):

1.0

Entropy

0]

S e e
0.75 0.8

Similar results apply within t?ﬁ'e class of binary XOR games.




Application: QKD




Device-independent Quantum Key Distribution

Our proof can be adapted to give another proof of DI-QKD.
1. Do step 1 of the spot-checking protocol. Communicate to check score.

010011101... 110110000...




Device-independent Quantum Key Distribution
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Device-independent Quantum Key Distribution

Our proof can be adapted to give another proof of DI-QKD.
1. Do step 1 of the spot-checking protocol. Communicate to check score.
2. Have Alice make an optimal guess at Bob’s bits using her bits.
3. Perform information reconciliation.

010011101... 010011101...




Device-independent Quantum Key Distribution

Our proof can be adapted to give another proof of DI-QKD.
1. Do step 1 of the spot-checking protocol. Communicate to check score.
2. Have Alice make an optimal guess at Bob’s bits using her bits.
3. Perform information reconciliation.
4. Perform randomness extraction.

This works if step 1 generates more entropy than is lost at step 3.

111011100... 111011100...




Open Problems




Prove the best possible rate curves

We have two families of rate
curves, neither optimal. What
are the best rate curves?

Can we match the classical-
adversary rate curves?




Parallel randomness expansion

Give inputs to the boxes all at
once. Can we still verify
randomness?

101110101/10101000
000000007 111110000
1011110114 010101010
010111010, 010101101
01100000
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