LHV models for quantum states and measurements

Nicolas Brunner

NCKU Tainan, Dec 2015

Joint work with

Joe Bowles

Flavien Hirsch

Marco Túlio Quintino

Tamás Vértesi (Debrecen)

Miguel Navascués (Vienna)

Matthew Pusey (PI)

Quantum Nonlocality

Data: $p(ab|xy) = \operatorname{Tr}(\varrho M_{a|x} \otimes M_{b|y})$

Q1: LHV model for an entangled quantum state

All
$$\leftarrow \rho$$
 All Measurements All

Question 1

General method for constructing LHV models for entangled quantum states

Hirsch et al. arxiv 2015 also: Cavalcanti et al. arxiv 2015

Question 1

General method for constructing LHV models for entangled quantum states

- Applicable to any entangled state
- Can be implemented on a standard computer
- Converging sequence of tests

Hirsch et al. arxiv 2015 also: Cavalcanti et al. arxiv 2015

$$\rho_W^{\mu} = \mu \left| \phi_+ \right\rangle \left\langle \phi_+ \right| + (1 - \mu) \frac{\mathbf{1}}{4}$$

$$\rho_W^{\mu} = \mu \left| \phi_+ \right\rangle \left\langle \phi_+ \right| + (1 - \mu) \frac{\mathbf{1}}{4}$$

$$\rho_W^{\mu} = \mu \left| \phi_+ \right\rangle \left\langle \phi_+ \right| + (1 - \mu) \frac{\mathbf{1}}{4}$$

$$\rho_W^{\mu} = \mu \left| \phi_+ \right\rangle \left\langle \phi_+ \right| + (1 - \mu) \frac{\mathbf{1}}{4}$$

What about a generic state?

Map the problem to a simpler one

LHV model for ALL measurements on ρ

LHV model for a **FINITE** set of measurements on ρ' (close to ρ)

Initial state ρ'

Take finite sets of meas $\{M_{a|x}\}$ and $\{M_{b|y}\}$

Initial state ρ'

Take finite sets of meas $\{M_{a|x}\}$ and $\{M_{b|y}\}$

Check $p(a,b|xy) = tr(\rho' M_{a|x} M_{b|y})$ is local

Initial state ρ'

Take finite sets of meas $\{M_{a|x}\}$ and $\{M_{b|y}\}$

Check $p(a,b|xy) = tr(\rho' M_{a|x} M_{b|y})$ is local

 $\boldsymbol{\rho}'$ is local for all **noisy measurements**

$$M^{\eta}_{\pm|\vec{x}} = \frac{1}{2} (\mathbf{1} \pm \eta \, \hat{x} \cdot \vec{\sigma})$$

Initial state ρ'

Take finite sets of meas $\{M_{a|x}\}$ and $\{M_{b|y}\}$ Check $p(a,b|xy) = tr(\rho' M_{a|x} M_{b|y})$ is local

η

 ρ' is local for all noisy measurements $M^{\eta}_{\pm|\vec{x}} = \frac{1}{2}(\mathbf{1} \pm \eta \, \hat{x} \cdot \vec{\sigma})$

Noisy version of ρ' is local for all pure meas <u>Target state</u> $\rho = \eta^2 \rho + (1-\eta^2) \sigma_{sep}$

Application: Werner states

$$\rho_W^{\mu} = \mu \left| \phi_+ \right\rangle \left\langle \phi_+ \right| + (1 - \mu) \frac{\mathbf{1}}{4}$$

Iterative procedure

To be explored

- POVMs
- Higher dimensions
- Multipartite systems

Question 2

Can all incompatible sets of measurements lead to Bell violation?

Incompatibility \rightarrow Bell violation ??

Incompatibility \rightarrow Bell violation ??

Projective measurements

Incompatibility (commutativity) → CHSH violation Khalfin Tsirelson'85

Incompatibility \rightarrow Bell violation ??

Projective measurements

Incompatibility (commutativity) → CHSH violation Khalfin Tsirelson'85

What about POVMs?

Joint measurability

POVM {M_a} & {M_b} are JM if there is joint POVM {C_{ab}} s.t. $M_a = \Sigma_b C_{ab} \& M_b = \Sigma_a C_{ab}$ Joint measurability

POVM {M_a} & {M_b} are JM if there is joint POVM {C_{ab}} s.t. $M_a = \Sigma_b C_{ab} \& M_b = \Sigma_a C_{ab}$

Partial JM does not imply fully JM

Heinossari'08, Liang et al'11

JM vs nonlocality

2 binary POVMs Wolf et al. 2007
 Incompatibility → CHSH violation

JM vs nonlocality

2 binary POVMs Wolf et al. 2007
 Incompatibility → CHSH violation

Incompatibility steering
 Quintino et al & Uola et al '14

Our candidate

Continuous set of noisy qubit measurements

 $\mathcal{M} = \{M_{\pm|\hat{x}}^{\eta}\}$ for all Bloch vectors \vec{x}

where
$$M^{\eta}_{\pm | \vec{x}} = \frac{1}{2} (\mathbf{1} \pm \eta \, \hat{x} \cdot \vec{\sigma})$$

Our candidate

Continuous set of noisy qubit measurements

Our candidate

Continuous set of noisy qubit measurements

To show: $p(ab|xy) = \operatorname{tr}(|\phi_{\theta}\rangle \langle \phi_{\theta}| M^{\eta}_{a|\hat{x}} \otimes \Pi_{b|\hat{y}})$ is local

Step 2

$$\mathcal{M} \longleftarrow |\phi_{\theta}\rangle \longrightarrow \text{All projective meas }\Pi_{b|y}$$
To show: $p(ab|xy) = \operatorname{tr}(|\phi_{\theta}\rangle \langle \phi_{\theta}| M_{a|\hat{x}}^{\eta} \otimes \Pi_{b|\hat{y}})$ is local
 $\operatorname{tr}(|\phi_{\theta}\rangle \langle \phi_{\theta}| M_{a|\hat{x}}^{\eta} \otimes \Pi_{b|\hat{y}}) = \operatorname{tr}(\rho_{\theta}^{\eta} \Pi_{a|\hat{x}} \otimes \Pi_{b|\hat{y}})$

$$\operatorname{tr}(|\phi_{\theta}\rangle \langle \phi_{\theta}| M_{a|\hat{x}}^{\eta} \otimes \Pi_{b|\hat{y}}) = \operatorname{tr}(\rho_{\theta}^{\eta} \Pi_{a|\hat{x}} \otimes \Pi_{b|\hat{y}})$$
noisy meas
pure state
 $\rho_{\theta}^{\eta} = \eta |\phi_{\theta}\rangle \langle \phi_{\theta}| + (1 - \eta) \frac{\pi}{2} \otimes \rho_{B}$

Step 3

Show that
$$\rho_{\theta}^{\eta} = \eta \ket{\phi_{\theta}} \langle \phi_{\theta} | + (1 - \eta) \frac{\mathbf{1}}{2} \otimes \rho_{B}$$

is local for $\eta > \frac{1}{2}$ and for all $\theta \in [0, \pi/4]$.

Step 3

Show that
$$\rho_{\theta}^{\eta} = \eta |\phi_{\theta}\rangle \langle \phi_{\theta}| + (1 - \eta) \frac{\mathbf{1}}{2} \otimes \rho_{B}$$

is local for $\eta > \frac{1}{2}$ and for all $\theta \in [0, \pi/4]$.

Step 3

Show that
$$\rho_{\theta}^{\eta} = \eta |\phi_{\theta}\rangle \langle \phi_{\theta}| + (1 - \eta) \frac{\mathbf{1}}{2} \otimes \rho_{B}$$

is local for $\eta > \frac{1}{2}$ and for all $\theta \in [0, \pi/4]$.

Summary

LHV model for a set of incompatible POVMs

$$\mathcal{M}^{\eta}_{A} = \{M^{\eta}_{\pm|\hat{x}}\}$$
 for all Bloch vectors $\vec{\mathbf{x}}$

Summary

LHV model for a set of incompatible POVMs

Open questions

• LHV model for set of few measurements

- Notion of incompatibility corresponding to Bell nonlocality
- Activation