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i Local Realism B

Einstein, Podolsky, Rosen (1935): “If, without in any way
disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this
physical quantity.”

Realism: external reality exists and has definite properties
whether or not we measure them

Locality: changing or measuring one system has no influence
on a non-interacting system (e.g., space-like separated)

Bell (1965): QM gives different statistical predictions
than any local realistic model.



Bell Test

If measured in the 6 basis, then the
outcome is determined by f(8) = {0,1}

Problem:
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ILLINOIS -
What is “Loophole free”?

1) =eoeadipym
P(+ + |ab) < P(+0|ab) + P(0 + |a'b) + P(+ + |a't) 2) mReakionim

3) Setting choices are independent of
each other and of the photons being
measured

Ot + |ab) < Citljab)  C0+lad) ClLafatd) 4) measurements of locations and

N(+ + |ab) = N(40|ab') = N(0+ |a’b) = _N{(+ + |a'V) fimes of events are reliable

5) Alice’s and Bob’s measurement
outcomes are fixed at the time

taggers A “loophole”

Can be tested (space-
time separation of
“detection events”)

Untestable (always /

required to make the ~ Unnecessary “Loophole free” = minimal
assumption) (required only for low  assumptions, and all testable
efficiency systems) assumptions are bounded.

J.-A. Larsson, J. Phys. A 47, 424003 (2014).




Hypothesis test

 Important for any test (e.g., high energy experiments)
— Standard deviations break down at tail ends of distributions

e Example: Test if a coin is biased towards heads
— Null hypothesis to be tested: coin is fair
— Test statistic: Number of tosses that land heads

»>> length(find(randi(2,100,1) == 2))
ang =

56
I

— The p-value is the probability a fair coin could have produced the test
statistic (or more extreme). s this below our threshold?

100 Can only draw conclusions
100\ -2 (100
Z ( I ) 9~ Fo~(100-h) — (136 / from very small p-values.
k=56

HEP requires ~1/3,500,000
— In our case, LR is a fair coin toss for our test statistic, so we follow

same idea. But a few very key points...



Hypothesis test

100 T
> (12()) 9~ko=(100-k) — (136
k=56

e A few subtle points:

— We decided to toss the coin 100 times.

This must be chosen in advance!

— Local realistic models would know the
outcome given the settings and could | |
lock in a statistical fluctuation

10™ §

Optimal stopping point

Accumulated p-value
o

Pre-determined stopping point

Elapied time (minutes)

 We still make assumptions, we need to bound the assumptions.

The p-value is no better than our confidence in assumptions.
— In particular, we can place a bound on our no-signaling assumption. A
p-value that is smaller than our confidence in no-signaling is meaningless.



Bell test

e Bell inequality: P(+ + |ab) < P(+0[at)) + P(0 + |a'b) + P(+ + |a't')

“Heads”
A “coin toss” if we see

an event in this set

o Test statistic: @ +0ab’,0 4+ a'b,+ + a'b'}

[ 5853 2600 2652 97 ]

Stopping criteria: 11202
90% of the estimated/ 11202
number of “coin flips” Z k
in the 30 minute data k=5853

set. Use that fixed
number.

) 2—11202 — 1 x 10—6

The data set, on average, would have

12446 “coin flips”, set stopping criteria to
0.9 x 12446 = 11202




Downconversion
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Detection
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What we call 0/+ events
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RNG sources

e We XOR 3 RNG distinct sources

— 2 QRNG sources
e Photon-Sampling Random Number Generator
— Is there a photon in an attenuated coherent state?
e Phase-Diffusion Random Number Generator
— What is the phase between a laser now and a re-seeded laser?
— Cultural numbers

e Both Alice and Bob have a string based on movies and shows (e.g., Star
Trek, Saved by the Bell, Back to the Future, Dr. Who)

* What is more likely: QRNG are correlated to entangled photons, or
shows from the 1990’s are correlated to entangled photons?

* Does not use the same power grid that the laser, crystal, QRNG,
detectors all rely on, for example.

— The total RNG relies on all 3 QRNG, if one disagrees with the
cultural numbers, then the QRNG secures it, and vice versa.

S. Pironio, “Random ‘choices’ and the locality loophole”, arXiv:1510.00248 [quant-ph] (2015).




Position/timing measurements

e Multiple measurements all consistent
— OTDR = { _
— Timetagger
— Manual distance measurements
— GPS measurements

e Final position uncertainty =1 m (3.3 ns)

— Limited by position of the detector in the cryostat
(we cannot see it, therefore we only say it is in the
cryostat)




Position/timing measurements
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Position/timing measurements

e Multiple measurements all consistent

— Manual distance measurements
— GPS measurements
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Spacetime Diagrams

Of the 15 pulses, the optimal spacetime separation is
pulse 6. We center all data analysis around pulse 6.
Pulse separation = 12.5 ns, position uncertainty = 3.3 ns
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e \We took a total of 6 109
data sets.
— The p-values displayed B
account for data set 10°
selection

— Other data sets still
have small p-values.

e The data set presented
is for 30 minutes of 103
data (our stopping
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Equivalent Standard Deviations

Meausrement inside
forward lightcone of

criteria means we use other party's RNG
approximately 27 10 = 13
min utES) Pulse Number 0

Large distribution of p-values is due
to Pockels cell voltage fluctuations
during the 200 ns active time (7 pulse
data is worse than 5 pulse data!)



All locations can
simultaneously move
inside the uncertainty
bubble.

spacetime overhead
9.2m Aggregate Pulses

7.3m \> 1 p-value = 0.0025
5.4m \ 3 p-value = 2.4x 107°
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Conclusion

“Loophole free” is minimizing assumptions, and testing those that
can be tested

Hypothesis testing should be used in future experiments

Multiple RNG devices are used since RNG is a weak point in Bell
tests

P-values of 0.0025, 2.4x10°, 5.8x10°,2.0x107 with spacetime
separation 9.2m, 7.3m, 5.4m, 3.5m (+1m)

Hard experiment, lucky to have 3 results
Can’t do randomness extraction yet (not enough data), but soon...

Not the end of experimental Bell tests, so much more! (e.g., see the
poster on our arXiv paper: B. G. Christensen, Y.-C. Liang, N. Brunner,
N. Gisin, P. G. Kwiat, “Exploring the limits of quantum nonlocality
with entangled photons”, arXiv:1506.01649 [quant-ph] (2015).



QM exists in a complex Hilbert SpaceR

e Can we use a Bell inequality that has a bound
if we only use 2-dimensions of the Poincare

sphere?

e\
sii The Elegant Bell Inequality
o E(a,,b,)+E(a,,b,)+E(as,b,)
N E(ay,b,)-E(a,b,)-Elasby)  _

Alice’s three vectors are mutually orthogonal -E(a 1,b3)+E(a2,b3)-E(a3,b3)
Bob’s four vectors are the vertices of a tetrahedron

N. Gisin, Bell inequalities: many questions, a few answers. arXiv:0702021 [quant-ph] (2007).
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