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A pure state |¢) is separable iff it is a product state:
1) = |a)alb)s = |a, b).

Otherwise it is entangled.

Mixed states: Consider convex combinations: o is separable, if
QZZ’. pilai)(ai| @ |bi)(bi|,  mit p; >0, Z; pi=1.

Interpretation: Entanglement cannot be generated by local operations and
classical communication.
R. Werner, PRA 40, 4277 (1989).




‘I The separability problem

Question
Given p, is it entangled or separable?




" The separability problem

Question
Given p, is it entangled or separable?

Geometrical interpretation

The set of all separable states is convex.

separable

entangled




" Multiparticle entanglement
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Several possibilities:

.

@ Fully separable:
[4%) = 1000)

@ Biseparable:
[¥"®) =10) ® (/00) + [11))

@ Genuine multiparticle entangled:
|GHZ) =]000) + |111) oder |W) =]001) + |010) + |100).

@ Mixed states: Convex combinations, again.




'l Why is entanglement interesting?

Quantum cryptography

A‘U‘B

Source S sends entangled
states to A and B.

From the correlations a key
can be generated.

If the measurement results
are compatible with a
separable state, then the

scheme is not secure.
AK. Ekert, PRL 67, 661 (1991);
M. Curty et al, PRL 92, 217903 (2004).

One-way quantum computer

information flow
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@ By making local
measurement on a cluster
state, a quantum computer
can be realized.

@ Problem: Experimental
generation of the cluster
state.

R. Raussendorf, H. Briegel, PRL 86, 5188 (2001).
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‘I Entanglement and precision measurements

The task

Assume we have a device D indu-
cing the transformation

0) = 10), 1) = €™[1)

How can we estimate ¢?
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Simple strategy
@ Prepare [¢)) = [0) + |1).
o Apply D: [¢) = [0) +e"[1).
@ Measure (o) ~ cos(¢).

@ Uncertainty:

Aloy)
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@ Repeat N times:
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A = 1
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o Apply D: [¢) = [0) +e"[1).
@ Measure (o) ~ cos(¢).

@ Uncertainty:

Aloy)
|0(0x)/99]
@ Repeat N times:

Ap>1/VN

A = 1

" Entanglement and precision measurements
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Using entanglement

@ Prepare N qubit state:
|GHZy) = |0...0) + |1...1)

@ Apply D and measure
(02M) ~ cos(N).

@ Uncertainty:
1

Review: V. Giovanetti et al, Science 306, 1330 (2004)
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1) Start with a product state
on N qubits in the state

[+) = Ix*) = (10) + [1))/v2




+)

1) Start with a product state on N
qubits in the state |+) = |xT) =

(10) +11))/v2

2) Let some of them interact pairwise
via some Ising-type interaction:

Cop = elj(]l—a

This corresponds to a phase gate.




1) Start with a product state on N
qubits in the state |[+) = |xT) =

(10) +11))/v2

2) Let some of them interact pairwise
via some Ising-type interaction:

C,p = ¢ FA-0 -0 100}

b =

This corresponds to a phase gate.
p p g

3) Resulting state is the graph state.

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).



‘I Graph states as stabilizer states
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1) For any graph, we define sta-
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bilizing operators as (X; = ox
S=X Q z.
JEN(i)

2) The graph state |G) is the un-
ique state fulfilling

516) = |6).
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1) For any graph, we define sta-

bilizing operators as (X; = of(i))

S=X Q z.
Jen(

2) The graph state |G) is the un-
ique state fulfilling

516) = |6).

‘I Graph states as stabilizer states

GHZ as example

The GHZ state |GHZ) = |000) +
1111) fulfills

X1 XoX3|GHZ) = |GHZ)
Z12,1|GHZ) = |GHZ)
12,Z;|GHZ) = |GHZ)

and corresponds (up to local ro-
tations) to the graphs

D) 9
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Graph states

Further examples of graph
states: General GHZ states:

N

and cluster states:

Properties of graph states:

@ They serve as the central
resource in the one-way
quantum computer.

R. Raussendorf, H.J. Briegel, PRL 86, 5188

(2001)

@ All code words in quantum
error correcting codes
correspond to graph states.

D. Schlingemann and R.F. Werner, PRA 65,
012308 (2002).

@ The violate local realism in an
extreme manner.

0. Giihne et al., PRL 95, 120405 (2005).




Hypergraph states

COEmEEmEm@m@®
28 56 70 56 28 8 E]

-

- ) e = ) ez )Gm) 202 @D @D
0 G G o) i) o) i) ) ) 3 (3 (2 () G C) )
(@) 6 ) a0 ) se0 ) a0 ) s ) o008 ) 18 12670 ) o) auus ) 4368 ) 820 ) s ) 120 )( 16 )(QA)



In a hypergraph, edges can contain more than two vertices.




In a hypergraph, edges can contain more than two vertices.
The controlled phase gate on an edge e is given by

Co=1-2/1---1)(1---1]




In a hypergraph, edges can contain more than two vertices.
The controlled phase gate on an edge e is given by

Co=1-2/1---1)(1---1]
The hypergraph state is:

H) =TT Cel+)="

ecE

C. Kruszynska, B. Kraus. PRA 79, 052304 (2009), M. Rossi, M. Huber, D. BruB,C. Macchiavello, NJP 15, (2013).



'l The nonlocal stabilizer

Define for each qubit the operator
g=([Ic)x(I]c)=xe(I]Cm)
ecE eckE e

Then:
gilH) =|H) foralli




‘I The nonlocal stabilizer

Define for each qubit the operator
g=([Ic)x(I]c)=xe(I]Cm)
ecE eckE e

Then:
gilH) =|H) foralli

The stabilizing operators g;:
@ ... are hermitean, but nonlocal,
@ ... commute: gig;j = &;j&i,

@ ... generate a group with 2V elements.




" Examples

The three-qubit HG state

1
3@»
‘ 1 3

For the simplest nontrivial HG we have

1
V8

after a Hadarmard transformation on the third qubit:

|Hs) = —=(]000) 4 [001) -+ |010) + 011) + |100) + |101) + |110) — [111))

IHy) = %(|ooo> +1010) + [100) + |111)).

This state was also called “logical AND state”.

S. Abramsky, C. Costantin, arXiv:1412.5213



‘I Pauli operations

Three possibilities
How does |HG) — O’—_(,i)‘HG> change the hypergraph?
@ Z-tranformation: Add / remove the edge e = {i}, since Cjy = o).

@ X-transformation: Determine the set
ER) = {e\ {k}|e € E(k)}.

by taking all edges e which contain k and then removing k out of all
these edges.

Then, remove or add the edges from £ to the HG, depending on
whether they exist already in the HG or not.

@ Y-transformation: Combined X- and Z- transformation.

R. Qu, J. Wang, Z. Li, Y. Bao, PRA 87, 022311 (2013).
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X1P—>ZQ,Z3I—>X2I—)Z;[I—>X3

Consequence

There is only one HG state for three qubits.




LU classes for four qubits

One finds 27 LP equivalence classes, which turn out to be LU inequivalentJ

(numbering)

)

(10) (11) (12) (13) (14)

O. Giihne et al., J. Phys. A: Math. Theor. 47, 335303 (2014)



LU classes for four qubits

One finds 27 LP equivalence classes, which turn out to be LU inequivalentJ

(15) (16) 7) (18) (19)

(0) @1 @2 @3) (24)

(25) (26) (27) (GHz4) (Cluster)

O. Giihne et al., J. Phys. A: Math. Theor. 47, 335303 (2014)



" Some interesting states

States with maximally mixed single-qubit marginals are:

@ No. 3:
|V> \/§| > 1| >
3) — 4 E4 2 GH24 .

@ No. 9: With |v) = (]00) + |01) — |10) + |11))/2 one has:

1

|V9>:ﬁ

1 1 _
1GHZ;) + 5101 ) + H110)/7),

@ No. 14:
3 j
Vi) = \/;D4>+2|GHZ4>,

@) ©) (14)




" Discussion

LU-LP Problem
@ Is LU equivalence always equivalent to LP equivalence?
@ For many cases yes, but in general ... ?

@ Counterexamples would be useful.

Questions
@ Is there a general rule to identify maximally entangled HG states?

@ What are the applications of these states?




Bell inequalities for HG states




‘I The first idea

First Problem J

Can the non-local stabilizer be used for characterizing local correlations?
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@ The state |H;) is a +1 eigenstate of

81 = X1 ® Gz = X; ©(|00)(00] + |01)(01] + [10)(10] — [11)(11])




" The first idea

First Problem

Can the non-local stabilizer be used for characterizing local correlations?

4

@ The state |H;) is a +1 eigenstate of

81 = X1 ® Gz = X; ©(|00)(00] + |01)(01] + [10)(10] — [11)(11])

@ So we have
P(+—-—|XZZ) = 0.

@ Furthermore:

P(— + +|XZZ) + P(— + —|XZZ) + P(— — +|XZZ) = 0,

= The non-local stabilizer predicts some local perfect correlations!




‘I Hardy argument

If a LHV model satisfies the conditions from zero correlations from the
state |Hs) then it must fulfill

P(+ — —|XXX) 4+ P(= + —|XXX) + P(— — +|XXX) = 0.




‘I Hardy argument

If a LHV model satisfies the conditions from zero correlations from the
state |Hs) then it must fulfill

P(+ — —|XXX) 4+ P(= + —|XXX) + P(— — +|XXX) = 0.

In contrast, for |H3) we have

P(+ — —|XXX) = %

This argument can be generalized to N qubits.




'l Genuine multiparticle nonlocality

Taking the zero terms and P(— — —|XXX) and P(— — —|ZZZ) one has a
Bell-Svetlichny inequality for genuine multiparticle nonlocality,

<3<2>> = [P(+ — —|XZZ) + P(— + +|X22)
+P(— + —|XZZ) + P(— — +|XZZ) + permutat.|
+P(— — —|XXX) — P(— — —|ZZZ) > 0,

which is violated by |Hz) with <B(2)) —1\16.

This inequality is a facet of the classical polytope.




‘I Scaling

Question & Answer

@ Does the violation of local realism increase with the number of
particles? What are the interesting many-qubit HG states?

@ Take three- and four-uniform fully connected HG states. They can
be seen as generalizations of GHZ states.




‘I Scaling

@ For three-uniform HG states and for even m with 1 < m < N:

+l if m=2 mod 4,
<X...XZ...Z>—{ 3 £ m—0 mod 4

@ A similar result holds for four-uniform HG states
@ This can be combined with the Mermin-type Bell operator:

By = —[AAA...AA| + [BBA... A+ permutat.|—
—[BBBBA...A+ permutat.| 4+ [...] —...



'l Results

@ For three-uniform HG states the violation of Bell inequalities scales
exponentially with the number of particles:

<BN>Q NT)\/OO N
(Bw)c v2

@ For four-uniform HG states the scaling is:

B
(Brg woo 1 og711m
<BN>C




‘I Results

For three-uniform HG states the violation of Bell inequalities scales

exponentially with the number of particles:

<BN>Q N:loo N
(Bw)c v2

For four-uniform HG states the scaling is:

(Bn)g N—oo N
~1.20711
(Bw)

@)

For four-uniform HG states also the state after loosing one qubit

violates Bell inequalities with the same scaling.

For three-uniform HG states the reduced state is still highly

entangled.

M. Gachechiladze, C. Budroni, O. Giihne, arXiv:1507.03570




Applications

@ HG states are useful in the standard scheme of metrology

1

Reason: The visibility of the cos(N¢) component is related to the
violation of the Mermin inequality.

W.B. Gao et al., Nat. Phys. 6, 331 (2010)

@ HG states are useful in some schemes of measurement based
quantum computation.

M. Gachechiladze, C. Budroni, O. Giihne, arXiv:1507.03570

@ Open Question: HG states & topological models?

B. Yoshida, arXiv:1508.03468, J. Miller, A Miyake, arXiv:1508.02695.



‘I Conclusion

@ HG states are a generalization of graph states
@ They can be described by a non-local stabilizer formalism

@ They violate Bell inequalities in many ways and are robust against
particle loss

@ The can be useful in metrology & quantum computation
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