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Device independence

Testing physical properties from experimental data
without detailed knowledge of the implementation.

Examples : Bell nonlocality, entanglement, dimension.




Device independence

Testing physical properties from experimental data
without detailed knowledge of the implementation.

Examples : Bell nonlocality, entanglement, dimension.

In this talk: message entropy in prepare and measure scenario.
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Bound minimal entropy S(,O)

compatible with data  p(b|zy)
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Minimal entropy: average communication.

Minimal dimension: worst case communication.




Entropy witnesses

Want function of data and a bound such that
W (p(blzy)) > Ls = S(p) > s

For the average message (we will assume uniform inputs).

— . Diagonal for classical messages
p Z p(x)px so von Neumann — Shannon.
T
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Want function of data and a bound such that
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For the average message (we will assume uniform inputs).

— . Diagonal for classical messages
p Z p(x)pm so von Neumann — Shannon.
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Causal inference graphs Convex optimisation
« Very general (arbitrary input/ouput)  Restricted numbers input/output
* Generally not tight  Tight bounds
+ Does not distinguish classical/quantum. « Demonstrate quantum advantage.
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Entropy and dimension are different quantities

Classical strategy for d” preparations
and d>-1 measurements, binary output.
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Entropy and dimension are different quantities

Classical strategy for d° preparations r m
and d’-1 measurements, binary output. r111 1
The entropy is f
S(p) = =) log(p(m))
" 3 d> —d

Dimension witness of Gallego et al. (PRL'10)
— Requires message dimension at least d+1
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Entropy and dimension are different quantities

Classical strategy for d° preparations r m
and d>-1 measurements, binary output. r111 1
The entropy is r
S(p) = =) log(p(m))
" 3 d> —d

=3

Dimension witness of Gallego et al. (PRL'10)
— Requires message dimension at least d+1

worst case communication
VS.
average communication

Dimension diverges
Entropy vanishes
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Causal inference method
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Causal relationships captured by linear equations in the entropies

Associate DAG

H(X,Y,A) = H(X)+ H(Y) + H(A)
H(M|X,A) =0
H(B|Y,M,A) =0




Form vectors of all joint entropies. E.g. for n variables:

(H(O),H(X1),...,H(X1,Xs),...,H(X1,...,X,)] e R*

Causal
constraint

| k.._-__-
Entropy vectors are restricted by the causal constraints * =
and by Shannon-type inequalities.

¢ Monotonicity (uncertainty of larger set is larger)

* Strong subadditivity (positivity of cond. info.)
* Positivity, normalisation.

Shannon cone




Deriving inequalities

1) List Shannon-type inequalities. Quantum: some joint entropies not physical.
2) List causal constraints. M
3) Marginalise to observable variables.
— Replace constraints by data processing.
(Chaves, Majenz, Gross, Nat. Comm.‘15).




Deriving inequalities

1) List Shannon-type inequalities. Quantum: some joint entropies not physical.
2) List causal constraints. M
3) Marginalise to observable variables.

— Replace constraints by data processing.
(Chaves, Majenz, Gross, Nat. Comm.‘15).

H(X,Y,A)=H(X)+ H(Y)+ H(A)
H(M|X,A) =0
H(B|Y,M,\) =0

Only non-trivial inequality
S(p) 2 I(X : Y, B)

Also follows directly from the Holevo bound.




Fine-graining a bit more

We can fine-grain by adapting the graph to a fixed number of measurements

Get the nontrivial inequality
S(p) Z I(Xl . Bl) —I—I(XQ . B2) —+ [(Xl . X2|Bl) — I(Xl . X2)

Generalising

[ l

z
S(p) > ZI(Xi3Bi)+Z](X1 1Xz'|Bz:)—ZH(X1)+H(X1,---,XZ)

Reminiscent of Information Causality, but here: classical corr. /| quantum comm.
IC: quantum corr. [ classical comm.
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Fine-graining a bit more

We can fine-grain by adapting the graph to a fixed number of measurements

Get the nontrivial inequality

S(p)_> T(X1 : R1\—|—T(XORo\—|—]—(X1 : X0|B1\—T(X1:X2)

Valid for arbitrary number of inputs/outputs

Generalisin
> but does not distinguish quantum from classical.

l
S(p) 22

=1 1=2 =1

Reminiscent of Information Causality, but here: classical corr. /| quantum comm.
IC: quantum corr. [ classical comm.
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Convex optimisation method

Decompose observed data over deterministic strategies

m = gx(x)
blxy) = E 0 ) O as (2
b p— f)\ (y7 m) p( | y) )\’m q>\ b7f>\ (y7 ) 7g>\( )

Enough to consider message dimension = number of preparations — finite no. of strategies




Convex optimisation method

Decompose observed data over deterministic strategies

m = gx(z)
blxy) = ) Y N
b — f)\ (y7 m) p( | y) gﬂ; q>\ b7f>\ (ya ) 7g>\< )

Enough to consider message dimension = number of preparations — finite no. of strategies

min H(M) subject to Aq =p, g > 0, E g =1
q
A

H (M) concave in q

: : Enough to check extremal points
q lives in polytope
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To reduce complexity

Size of polytope is intractable
— Note: to evaluate the entropy we only need the distribution

p(m) = 3~ p(ml, Np(e)ar = — 3 plml \ax
AT A,

Observed data implies linear constraints on this. A
Find polytope by a sequence of linear programs.

— significantly reduces complexity.
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To reduce complexity

Size of polytope is intractable
— Note: to evaluate the entropy we only need the distribution

p(m) =Y p(mlz, \p(z)gx = % > p(mlz, Nax
A\,x A\,x

Observed data implies linear constraints on this. A
Find polytope by a sequence of linear programs.

— significantly reduces complexity. Py
-
|
In addition, consider only linear functions S
of data : dimension witnesses. =
p=Aq— Ip =1IAq -

p(m = 1)
Use witness of Gallego et al., PRL10, for n preparations,
n-1 measurements, binary ouputs.
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Convex optimisation result

Compare bound for classical messages with numerical optimisation
for quantum messages.

The classical bound is tight.

9
th =

minimal entropy
>
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Notice: No advantage by increasing
quantum message dimension.
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Compare the entropic and convex optimisation approaches

Comparison for a specific observed distribution (saturating the convex opt. bound).
— the entropic approach is clearly not tight.

b=
L
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minimal entropy
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Possible advantage of higher dimensions

Random Access Code for 4 preparation and 2 measurements, binary output

2.0F
o
2 1.5}
g |
g | Possible advantage of
g 1.0 ; dim. 4 over dim. 3.
0.5

0.0k

Ry = Eq11 + E1o + Eo1 — Eoo — E31 + B3 — Eyp — Eyo
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Summary

 Device-independent tests of entropy in prepare & measure scenario.

« Two approaches: entropic based on causal inference | convex optimisation.
« Entropic approach : general but non-tight.

« Convex optimisation approach : fixed numbers of inputs, output, but tight.

« Quantum strategies show advantage over classical:
achieve same dimension witness value with less entropy.
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Is there a killer app?
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Experiment under way...

Stephen Walborn group, Rio de Janeiro, Brazil.
Optical implementation with single photons.

Projection: filter + SPD.

Orbital angular momentum
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Thanks for your attention!
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Strategy saturating the convex optimisation bound for witness / :

for x < d— 2 send m

0 with prob. p

fort =d—1 send m = x with prob. 1 — p

|
-

otherwise send m

1
where p = §(Ld — 1)

L, : classical bound for dimension d
I,, : witness value
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