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[-Fundamental aspects and general relations

[I-Applications and thermodynamical aspects
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e C(lassical systems
e Information and Shannon Entropy
» C(lassical Correlation
* Quantum systems
* von Neumann Entropy and correlation
« Entanglement of pure states
« Entanglement of mixed states

* Quantum correlation with zero entanglement
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INFORMATION

Ex:Statistical problem with F possibilities:

e without any previous information about the problem;
(probability: po = 1/Fp)

e [f we obtain further information we can achieve a
situation where only one of the P possibilities 1s
actually realized.

e The larger the uncertainty, the larger will be 1o and the
larger will be the required information to realize a single
selection.
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REQUIRED INFORMATION

1. I, = 0, with P,possibilities equally probable.
2. 1o # 0, with Py = 1: a single possible result
I =kf(F)
Two independent problems:
Poy1 possibilities and Py possibilities
# total possibilities: Py = Py Pyo
» Additivity of required information:

I = Io1 + Ioo = k[ f(Po1) + f(FPo2)] = kf(Po1FPo2) = kf(Fo)
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SHANNON

f(Po) = In(Fo)

* For k =logy,e = I =log, Py : Bits:{0,1}

e Example:

Consider a binary word with » elements:

0111001010...0

# total possibilities:
P=2"—=1=FkIn(P)=knlin(2) =log, P

I = # of bits necessary to represent P possibilities
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GENERALIZATION

Message: N cels with [ Os and m s/

[ m
N =1 — Po = — = —
# of possibilities 1n the message:
N
= » I = log, N!—log, [! — log, m/!

long messages (Il,m, N > 1)

log, N! ~ N(log, N — 1)

7
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GENERALIZATION

Message: N cels with [ Os and m s/

[ m
N =1 — Po = — = —
# of possibilities 1n the message:
N
= » I = log, N!—log, [! — log, m/!

long messages (Il,m, N > 1)
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GENERALIZATION

Message: N cels with [ Os and m s/

[ m
N =1 — Po = — = —
# of possibilities 1n the message:
N
= » I = log, N!—log, [! — log, m/!

long messages (Il,m, N > 1)

I~ (l+m)logy N —llog,l — mlogy,m
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GENERALIZATION

Message: N cels with [ Os and m s/

[ m
N =1 — Po = — = —
# of possibilities 1n the message:
N
= » I = log, N!—log, [! — log, m/!

long messages (Il,m, N > 1)

I ~ —N (pg log, po + p1 log, p1)
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GENERALIZATION

Message: N cels with [ Os and m s/

[ m
N =] —Po= —=,P1 = —
# of possibilities in the message:
N!
P = T I =logy, N! —log, I! — log, m!

long messages  (I,m, N > 1)

7
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SHANNON ENTROPY

For M symbols Z1,%2,...,ZTMm

occurring with probabilities: P(21), p(22), ..., P(Zrr)
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SHANNON ENTROPY

For M symbols Z1,%2,...,TMm

occurring with probabilities: P(21), p(22), ..., p(Zs)
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PROPERTIES
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PROPERTIES
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H(X) =

PROPERTIES
H(X.Y)

J
H(X,Y)

— > p(z;)logyp(z;)  H(Y)=—_ p(y)logs p(ys)
k

== p(x;, yx) logy p(z;, Yi)
1,k




H(X) =

PROPERTIES
H(X.Y)

J
H(X,Y)

— > p(xj)logyp(x;)  H(Y)=-— Zp(yk) log, p(yx)

Zp Ly, yk) 10g2 p(x]7yk)




H(X) =

PROPERTIES
H(X.Y)

J
H(X,Y)

[H(X) -

— > play)logypla;)  H(Y)=— Zp () logs p(y)

= - pl;, yk)logzp(% Uk)
1,k

H(Y)| S[H(X,Y) < H(X)+H(Y)]
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H(X) =

PROPERTIES
H(X.Y)

J
H(X,Y)

— > p(z;)logyp(z;)  H(Y)=—_ p(y)logs p(ys)
k

Zp Ly, yk) 10g2p(x]7yk)
1,k
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PROPERTIES
H(XY)

H(X|Y)

— H(X,Y)— H(Y)

H(X)=—» p(z;)logop(z;) HY)=-=_p(ys)log, p(yr)
J k
H(X,Y) == p(x;,yx) logs p(a;, ys)
1,k
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PROPERTIES
H(XY)

H(X|Y)

= H(X,Y)

— H(Y) H(Y|X)=H(X,Y)— H(X)

H(X)=—» p(z;)logop(z;) HY)=-=_p(ys)log, p(yr)
J k
H(X,Y) == p(x;,yx) logs p(a;, ys)
1,k

9
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CLASSICAL CORRELATION

10

Wednesday, February 15, 2012




CLASSICAL CORRELATION

e (Correlation can be distributed at will.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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CLASSICAL CORRELATION

e (Correlation can be distributed at will.

Correlation between two stochastic variables: (X,Y)

HX:Y)=H(X)+H(Y)-H(X,Y)

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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CLASSICAL CORRELATION

e (Correlation can be distributed at will.

Correlation between two stochastic variables: (X,Y)

HX:Y)=H(X)+H(Y)-H(X,Y)

*Not always subadditive

HX:Y,2) £ H(X:Y)+H(X:2)

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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CLASSICAL CORRELATION

e (Correlation can be distributed at will.

Correlation between two stochastic variables: (X,Y)

HX:Y)=HX)+HY)-H(X,Y)
*Not always subadditive
HX:Y,Z)LHX:Y)+ HX:Z2)
*Not always superadditive.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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CLASSICAL CORRELATION
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CLASSICAL CORRELATION

Suppose we can increase H(X:Y) to be maximal
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CLASSICAL CORRELATION

Suppose we can increase H(X:Y) to be maximal

H(X)<H(Y) = H(X:Y)=H(X)
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CLASSICAL CORRELATION

Suppose we can increase H(X:Y) to be maximal

H(X)<H(Y) = H(X:Y)=H(X)

So H(X:Z)=H(X:Y)-H(X|Z)
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CLASSICAL CORRELATION

Suppose we can increase H(X:Y) to be maximal

H(X)<H(Y) = H(X:Y)=H(X)

So H(X:Z)=H(X:Y)-H(X|Z)

increases linearly with H(X:Y), being only constrained by

H(X:Z)<HX:Y)

11
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QUANTUM SYSTEMS
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QUANTUM SYSTEMS

p(z;) — p
Zj — Tr{}
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QUANTUM SYSTEMS

p(r;) — p

>, Tr{)

Sa=5(pa)=—-Trpalogpa Sp=S(pp) = —Trpplogps
SAB = S(,OAB) = —Trpaplogpap
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QUANTUM SYSTEMS

p(r;) — p
>, — Tr{}

Sa=5(pa)=—-Trpalogpa Sp=S(pp) = —Trpplogps
SAB = S(pAB) = —Trpaplogpap

Mutual Information
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QUANTUM SYSTEMS

p(r;) — p
>, — Tr{}
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QUANTUM SYSTEMS

p(r;) — p
>, — Tr{}

Sa=5(pa)=—-Trpalogpa Sp=S(pp) = —Trpplogps
SAB = S(,OAB) = —Trpaplogpap

Mutual Information

ABES(A:B):SA‘I—SB—SAB}

S(A: B) =S4 — S(A|B)

Wednesday, February 15, 2012




1S4 — S| < Sap <S4+ 5B
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(YaB| (pure): Tripap; —> Sap=0
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =54+ SB — S4B
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =254
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1S4 — S| < Sap <S4+ SB

paB = |YaB){¥as|(pure): Tr{pap}; —> Sap =0

Iap =254
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =254

[YaB) = zck|¢§l> ® |¢%)

k

pa=Tre{|Ya)Wasl} =) lexl’[¥5)(#h]
K
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =254

[YaB) = ZCHWO ® |¢%)

k

pa =T vas)Wasl} =) lenl?[v5) (dh]
k
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STATE TELEPORTATION

¥) = al0) +b]1),a, b7

//,

Alice\

Classical
channel
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STATE TELEPORTATION

¥) = al0) +b]1), a,b?

a Alice "\ - Bob \
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STATE TELEPORTATION

¥) = al0) +b]1), a,b?

a Alice \
O
O
A

[YaB) =

1

V2

(10Y 4|0y + |1) 4|1) B)

15
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&

Both

Wednesday, February 15, 2012




STATE TELEPORTATION

[¥) = al0) +b[1), a,b?

- Alice "\ A Bob
N=@
/7(@0 [YaB) = \% (10)4]0)B + 1) a|1)B) ‘

= Y kﬁ 4
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STATE TELEPORTATION

¥) = al0) +b]1), a,b?

V- Alice \ a Bob \
N=@
/fCZO [YaB) = \% (10)4]0)B + 1) a|1)B) ‘
2 —0 | |&
\ A / \
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STATE TELEPORTATION

¥) = al0) +b]1), a,b?

a Alice "\ - Bob \
=@
/fCZO |¢AB>:%(|O>A|O>B‘|‘|1>A|1>B> Q
P By,
T e g
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XY-MODEL WITH
TRANSVERSE MAGNETIC

N N

] N o ] o :
H = —;(l H v)z 0,0, —;(l —'*/)Z 0,0, —/IZ o
2 o 2

=1 =1

16




XY-MODEL WITH
TRANSVERSE MAGNETIC

N
Oioii 1 hz a;

=1
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XY-MODEL WITH
TRANSVERSE MAGNETIC
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XY-MODEL WITH
TRANSVERSE MAGNETIC
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XY-MODEL WITH
TRANSVERSE MAGNETIC

N N

N
H= —é(l +1)_ ook, ——;-(1 -3y wdly —k) o

dC(1)/dA

A=J/h

(1sing) ¥ =1
A. Osterloh, Luigi Amico, G. Falci & Rosario Fazio,Nature (London) 416, 608 (2002).
T. J. Osbornel%nd M. A. Nielsen, Phys. Rev. A 66, 032110 (2002).
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FIG. 2 (color online).  Derivative of the lower bound of G(2, 1)
for three values of anisotropy: y = 1 (red solid line). 0.6 (blue
dashed line). and 0.2 (black dotted line). The second phase
transition is also imprinted for the y = 0.2 as the curve crosses

the abscissa at A = 1/4/1 — y=.

T.R. de Oliveira, G. Rigolin, MCO, and E. Miranda, PRL 97, 170401 (20
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =254

[YaB) = ZCHWO ® |¢%)

k

pa =T vas)Wasl} =) lenl?[v5) (dh]
k
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1S4 — S| < Sap <S4+ SB

paB = [YaB)(WaB| (pure): Tripap; —> Sap=0

Iap =254

[YaB) = Z%Wf@ ® |¢%)

k

pa =T vas)Wasl} =) lenl?[v5) (dh]
k

[IOAB mixed: [ap # 0<+>Entanglemen’g

18
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ENTANGLEMENT OF
FORMATION
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ENTANGLEMENT OF
FORMATION

PAB = ZP@W?BN%L‘B’
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PAB = ZP@W?BN%L‘B’

ENTANGLEMENT OF
FORMATION

\ SA
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ENTANGLEMENT OF
FORMATION

PAB = Zi:pi\¢243><¢§w’\ SA

but
pas = Y aileiP) ("]

19
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ENTANGLEMENT OF
FORMATION

PAB = Zé:piW?BﬂlﬁB’\ SA

but , which one?
S4

PAB = Zqi\@wﬂcbe\ —

19
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ENTANGLEMENT OF
FORMATION

PAB = ;pi\¢§43><¢243‘\ .

Bt , which one?
54

PAB = ZCIi|¢§4B><¢§4B| /
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QUANTUM SYSTEMS

p(r;) — p
>, — Tr{}

Sa=5(pa)=—-Trpalogpa Sp=S(pp) = —Trpplogps
SAB = S(,OAB) = —Trpaplogpap

Mutual Information

IABES(A:B):SA—I—SB—SAB

S(A: B) =S4 — S(A|B)
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QUANTUM SYSTEMS

p(r;) — p
>, — Tr{}

Sa=5(pa)=—-Trpalogpa Sp=S(pp) = —Trpplogps
SAB = S(,OAB) = —Trpaplogpap

Mutual Information

IABES(A:B):SA—I—SB—SAB

[S(A . B) = S4 — S(A\B)}
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POST AND PRE-SELECTED
STATES

21
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POST AND PRE-SELECTED
STATES

PAB

VA
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

0 0
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

° W@ ph = —kLanLl

TT{E}ZEkPAB}

21
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

b @ Hgpaplly
° W PZB = Tr{llepan’ Iy = |¢pr) (DB

21
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

PAB
QW@ o = —RPABLE g

Pk

pr = Tr{ElExpap}
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

PAB
QW@ o = —RPABLE g

Pk

pr = Tr{ElExpap}

{ k TTB{Hk/OABHk}J
PA =
Pk
Post-selected state

21
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

PAB
QW@ o = —RPABLE g

Pk

pr = Tr{ElExpap}

{pﬁ _ TTB{H;ZABHk}J 04 = ;pklgi :Z Tre{llipaplly}
k

Post-selected state

21
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POST AND PRE-SELECTED
STATES

Measurement on B with outcome k

PAB
QW@ o = —RPABLE g

Pk

pr = Tr{ElExpap}

[pjlz _ TTB{Hk/OABHk}J {,OA == Zpkpi"‘ — TTB{,OAB} ]
Pk k

Post-selected state Pre-selected state

21
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(QUANTUM) MUTUAL
INFORMATION
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(QUANTUM) MUTUAL
INFORMATION

S(A: B)=54—S(A|B)
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(QUANTUM) MUTUAL
INFORMATION

S(A: B)=54—S(A|B)

Tai = S(pa) = > p;S(0)

TTB{HJ-B,OABH]-B}

pi =Trap {117 papllj'}, py = m
J




(QUANTUM) MUTUAL
INFORMATION

S(A: B) =S4 — S(A|B)
Jag = S(pa) — ijs(pf;)

TI‘B{H]-B,OABHJ-B}

p; =Trap {Hf,OABHf} , Py =

Pj

Classical Correlation

L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001)
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

23
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

Iap =54+ SB — S4B
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

Iap =54+ 5B —54B — -
AB — 1{1H1akx} A E Pk Ak

23
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

Iap =54+ 5B —54B — -
AB — 1{1H1akx} _ A Ek Pk Ak

1
5;1_3 = IaB — JXB

(Quantum Discord)

23
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64 =0 pap = va;ﬂ? ® IT

'
]
[}
0.8 | l
[ |
- |
]
. 0.6 - Separable i Entangled
I~ [}
04 | :
I | y
]
0.2} :
]
0 : — : ; : : '
0 0.2 0.4 0.6 0.8 '
Z

FIG. 2. Value of the discord for Wemner states ;-1 +
zlg) (¥l, with |¢) = (|00) + |11))/+/2. Discord does not

depend on the basis of measurement in this case because both
1 and |¢) are invariant under local rotations.

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)
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PRELIMINARY REMARK

Trade-off between the bipartite entanglement of 4 with B and
the entanglement of 4 with C.

If ) = % (104,0B) +|1a,1B))

There 1s no way to A get entangled to C without decreasing
entanglement with 5.

25
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PRELIMINARY REMARK

Trade-off between the bipartite entanglement of 4 with B and
the entanglement of 4 with C.

EalBc = €A+ Ealc +TaBC

25
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PRELIMINARY REMARK

Trade-off between the bipartite entanglement of 4 with B and
the entanglement of 4 with C.

EalBc = €A+ Ealc +TaBC

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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QUANTUM SYSTEMS

« Extension of classical form

S(A:B)E[AB:SA—I—SB—SAB

Not always subadditive

S(A: B,C) £ S(A:B)+ S(A:C)

Proper form
S(A:B)=S54—S(A|B)

26
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

J g = max

{1 }

27

(CC)

Sa— > prSak
k
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

(CC)

(QD) Jip =max |Sa— Y DSk

27
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

(QD)

J g = max

{1 }

(CC)

Sa— > prSak
k

&
Discrepancy: L ap =Jap —0ap J —IaB < Ayp < IaB
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LOCAL ACCESSIBLE AND
INACCESSIBLE INFORMATION

(CC)

(QD) Jip =max |Sa— Y DSk

Discrepancy: L ap =Jap —0up J —Iap < Ayp < Iap

Balance between the gain in work extraction by the use of global operations over
local ones, and the work extracted locally only.

27
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CORRELATION
DISCREPANCY

\CLASSICAL

QUANTUM CLASSICAL  QUANTUM j
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EOF MONOGAMY

PABC pure:

29
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EOF MONOGAMY

PABC pure:
EAB — 5XC’ -+ SA|C

E

\
/

)
Eap = EF (pap) = min ZZ%EF (l:))
. 7

M. Koashi and A. Winter, PRA 69, 022309 (2004)
F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).
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EOF MONOGAMY

PABC pure:
EAB — 5XC’ -+ SA|C

Eac =045 +SaB

E

\
/

)
Eap = EF (pap) = min ZZ%EF (l:))
. 7

M. Koashi and A. Winter, PRA 69, 022309 (2004)
F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).
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EOF MONOGAMY

PABC pure:
EAB + EAC’ — 5j4_3 -+ 520

F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).
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EOF MONOGAMY

PABC pure:

Eap+ Eac+ 84 =035 — 040 =954
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EOF MONOGAMY

PABC pure:

Eap+ Eac+ (Sa—04p —04c) = FEaBo)
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EOF MONOGAMY

PABC pure:
Fap+ Eac + 74 = Eaey

1
a = (4= 835 = 850)= S[ATp + Al

29
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EOF MONOGAMY

PABC pure:
Fap+ Eac + 74 = Eaey
1

TA = (SA—04p —04c)= 5[ an + Ao

T4a>0 & Jig+Jic>04p+ a0

29
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EOF MONOGAMY

PABC pure:
Fap+ Eac + 74 = Eaey

1
T4 = (84— 04 —0xc)= §[AZB + A%

T4a>0 & Jig+Jic>04p+ a0

EOF not monogamous if

Su < S,(A|B) + S, (A|C) < 2854

Tr; (11, p 44115,
Tr 4 (1T, paI1L)

Sq(Ali) = fﬁgzpks(PMk% PA|k =
k

29
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EXAMPLE
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EXAMPLE

TABC =TA+ T +Tc = Apn= A5 + At + A

30

Wednesday, February 15, 2012




EXAMPLE

TABC =TA+ T +7Tc = Ap= A5 + At + A

GHZ) = 0| 111) + ¢| L) =P  T4pc >0

30
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EXAMPLE

TABCETA—I-TB—I-TC:/\O:/\EA"‘ASB"‘AZC

GHZ) = 0| 111) + o[ L11) =g  T4pc >0
W) =a| 1) + 8| N1 + v 1) == T4pc <0
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CONCLUSIONS

* Quantum correlation exists whenever a quantum
feature 1s present

* Resource for information processing

« Two forms of correlation: local accessible and non-
local accessible

« Exists states that although with zero entanglement
are still quantum correlated
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