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1. INTRODUCTION TO SINGLE CHARGE
TRANSPORT

Quantum transport deals with particles (electrons, holes, quasi-particles) moving in a
more or less controlled way through artificial structures. I the following, I consider
quantum dots as the conceptually simplest nanostructures, and I only discuss electrons
and no other quasi-particles.

1.1 Quantum Dots

Electrons can be confined in small structures, e.g. metallic grains, or semiconductor-
based structures. Examples for the latter are lateral dots (defined by metallic gates
on top of a structure that supports a two-dimensional electron gas), and vertical dots.
Vertical dots can have a high spatial symmetry (circular pillar) in analogy to real atoms.
Lateral dots have a lower spatial symmetry which can be interesting for the study of,
e.g., quantum chaos. The number of electrons in quantum dots can be well controlled
(0,1,2,3,...) which is due to the Coulomb blockade effect to be discussed below.

Fig. 1.1: LEFT: Vertical quantum dot, from: L. P. Kouwenhoven, D. G. Austing, and S.
Tarucha, Rep. Prog. Phys. 64, 701 (2001). RIGHT: lateral quantum dot (C. Marcus,
Harvard; http://marcuslab.harvard.edu/research.html).
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1.2 The Single Electron Transistor

The single electron transistor (SET) is a simple theoretical model for single electron
transport (or more general: single charge transport) controlled by some external pa-
rameters (gate voltages etc.) It can be realized experimentally is many different ways
- semiconductor quantum dots, superconducting Cooper pair boxes, molecules attached
to external leads etc. The basic physics is the electrostatic charging energy, and some
transfer mechanism (usually quantum mechanical tunneling).

1.3 Basic Properties

1.3.1 Electrostatic Energy

The model is based on classical electrostatics. This is sometimes called the ‘orthodox
theory’ of Coulomb blockade due to Likarev et al., developed in the 80s. Let us consider
the electrostatics of the system shown in the figure. This looks a bit ‘electro-technical’
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Fig. 1.2: Scheme of single electron transistor (SET).

and not very ‘physics-like’. In the language of basic electrostatics (Maxwell’s capacity
coefficients, cf. textbooks like JACKSON or LANDAU II) this is, however, simply a
system of four spatially separated metallic conductors: a central island (‘dot’ D) with
charge QD ≡ −Ne at potential VD against three other conductors L (left), R (right),
and G (gate) at potential VL, VR, and VG with charges QL, QR, and QG.

From basic electrostatics, there is a linear relation

Qi =

4∑
j=1

CijVj , (1.1)

with i = L,D,R,G and the symmetric capacitance matrix Cij that depends on the
details of the geometry. For i = D this means

QD = CDDVD + CDLVL + CDRVR + CDGVG (1.2)
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The three capacitors CL, CR and CG in the circuit are parallel, and one has

CDD = CL + CR + CG ≡ C (1.3)

CDL = −CL, CDR = −CR, CDG = −CG (1.4)

which follows by considering potential differences, e.g. between the dot at potential VD

and all the other voltages zero. Therefore,

QD = CVD − CVext, Vext ≡
CLVL + CRVR + CGVG

C
(1.5)

and the external voltage is a combination of the other three voltages.
The charge on the dot is

QD ≡ −Ne, (1.6)

where −e is the elementary charge and N the number of charged particles. We define
the electrostatic energy of the central island (dot D) in the following way: the first
contribution is the interaction energy among the N charges, when the external voltage
Vext is kept fixed at zero;

Uint =
(Ne)2

2C
. (1.7)

The second contribution is simply the potential energy of the total dot charge −Ne in
the finite, external potential Vext;

Uext = −NeVext. (1.8)

The electrostatic energy of the dot (central island) as a function of N therefore is

U(N) =
(Ne)2

2C
−NeVext. (1.9)

Another way to derive this expression is to ‘continuously build up’ the total dot charge
by using

U(N) =

∫ −Ne

0
dQDVD =

∫ −Ne

0
dQD

(
QD

C
+ Vext

)
=

(Ne)2

2C
−NeVext. (1.10)

In the following, we assume that Vext can be continuously changed. In general, Vext only
takes discrete values because microscopically, also the charges QL, QR, and QG only are
discrete multiples of the elementary charge −e. However, this plays no role as long as
QL, QR, QG ≫ QD, which means that the charge QD in the dot is much smaller than
the charge in the reservoirs (conductors) L, R, and G.
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1.3.2 Chemical Potentials and Current Flow

In the following, we will assume electrons with charge −e as the individual particles
that charge the dot. The reservoirs (conductors L, R, G) are now modelled as zero
temperature Fermi gases at chemical potentials µL ≡ eVL and µR ≡ eVR. We assume
that electrons flow from the left to the right reservoir but not into the gate reservoir.
We find a condition for electrons flowing from left to right (but not backwards). First,
we define the chemical potential of the dot,

Definition

µdot(N + 1) ≡ U(N + 1)− U(N) =
(N + 1/2)e2

C
− eVext. (1.11)

1. An electron from the left lead with energy EL enters the dot. Energy conservation
requires

EL + U(N) = U(N + 1) µL > EL = µdot(N + 1) (1.12)

The inequality is simply the definition of the chemical potential µL as the largest
possible energy in the left reservoir.

2. Now there are two possibilities: another electron can flow from the left lead to the
dot; for this to occur one must have µL > µdot(N + 2) > µdot(N + 1), i.e. a larger
µL than in 1. is required. Alternatively, an electron leaves the dot into the right
lead, where it enters at energy

ER = U(N + 1)− U(N) µdot(N + 1) > µR. (1.13)

The last inequality follows from the fact that the electron can only enter above the
Fermi energy of the right lead (Pauli principle).

Note that the Pauli principle here really only comes into play when electrons leave the
dot.

To summarize, the minimal requirement for an electron current is

eVL ≡ µL > µdot(N + 1) > µR ≡ eVR, current flow condition (L → R). (1.14)

Definition If the current flow condition Gl. (1.14) is not fulfilled, the dot is in the
Coulomb blockade regime.

The next step is to explore the regions in the space of parameters (µL, µR, VG, and N)
where Coulomb blockade occurs. We define

Definition

VL − VR, bias voltage (1.15)

VG, gate voltage. (1.16)
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1.3.3 Linear Transport VL − VR → 0: Coulomb Blockade Oscillations

We first consider the limit of very small bias voltage VL − VR → 0+. Let us assume
VR = 0. The current flow condition Gl. (1.14) then becomes O+ > µdot(N +1) > 0 such
that current can only flow if

U(N + 1)− U(N) = 0 Vext =
(N + 1/2)e

C
. (1.17)

For VL = 0, VR = 0, Vext ≡ CGVG
C is proportional to the gate voltage VG. The current

flow condition therefore is fulfilled at gate voltages

VG =
(N + 1/2)e

CG
. (1.18)

For other values no current flows. As a function of VG, the current is zero, then finite,
then again zero, finite, ... these transitions, which are are the so-called Coulomb blockade
oscillations, occur for different values of N , and changing the gate voltage will thus
change the number of electrons N in the dot one by one.

1.3.4 Non–Linear Transport: Coulomb Blockade Diamonds

We now consider the current flow condition Gl. (1.14) at finite bias. Again we start with
a situation where N electrons are on the dot. The current flow condition is

eVL > U(N + 1)− U(N) > eVR, from left to right (1.19)

eVR > U(N + 1)− U(N) > eVL, from right to left. (1.20)

For convenience we take a symmetric situation VL = −VR = V/2. This means

eV/2 > U(N + 1)− U(N) > −eV/2, from left to right (1.21)

e|V |/2 > U(N + 1)− U(N) > −e|V |/2, from right to left. (1.22)

We evaluate these inequalities, using

U(N + 1)− U(N) =
(N + 1/2)e2

C
− eVext =

(N + 1/2)e2

C
− e

CGVG

C
, (1.23)

where we assumed symmetric capacitances CL = CR. Therefore, the minimal condition
for current to flow in either direction is given by

C|V |
2e

> (N + 1/2)− CGVG

e
> −C|V |

2e
(1.24)

To visualize this in a diagram, let us define the dimensionless variables

y ≡ CV

2e
, x ≡ CGVG

e
 |y| > N + 1/2− x > −|y| (1.25)

In the x-y-plane, this leads to a diagram with ‘diamond’ (rhombus) shaped areas. Inside
these Coulomb blockade diamonds the current flow condition is not fulfilled and the dot
is in a stable state with a fixed number N of electrons inside (FIGURE). We also recover
the linear Coulomb blockade regime for y = 0, i.e. along the x-axis: the corners where
the diamonds meet are the positions of current flow in the Coulomb blockade oscillations.
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1.4 Rate Equations for the Anderson Impurity Model

Consider a simple dot model with two single particle states Ea and Eb with 0, 1, or 2
spin-polarized electrons (the spin quantum number playes no role). The dot is attached
to a left and a right leads and can be in either of the four states 0, a, b, 2 with energy 0,
Ea, Eb, and Ea +Eb +U , where U is the (Hubbard like) interaction energy. We assume
that the external voltage Vext ≡ Φ is directly controlled by the gate voltage VG and shifts
the energy levels according to

εa ≡ Ea − Φ, εb ≡ Eb − Φ. (1.26)

1.4.1 Rate Equations

We describe a time evolution of the system by introducing rates, i.e. probabilities per
time, for internal transitions between dot states due to tunneling as γ0←a (rate for internal
transition from state a with 1 electron to state 0 with no electron), etc.

By considering the possibe transitions between states, we can immediately write
down a rate equation (master equation) for probabilities as a function of time:

ṗa = γa←0p0 − (γ2←a + γ0←a)pa + γa←2p2

ṗb = γb←0p0 − (γ2←b + γ0←b)pb + γb←2p2

ṗ2 = γ2←apa + γ2←bpb − (γa←2 + γb←2)p2

1 = p0 + pa + pb + p2. (1.27)

The rates are given by

γa←0 = ΓLfL(εa) + ΓRfR(εa), γb←0 = ΓLfL(εb) + ΓRfR(εb) (1.28)

γ0←a = ΓLf̄L(εa) + ΓRf̄R(εa), γ0←b = ΓLf̄L(εb) + ΓRf̄R(εb)

γ2←a = ΓLfL(U + εb) + ΓRfR(U + εb), γ2←b = ΓLfL(U + εa) + ΓRfR(U + εa)

γa←2 = ΓLf̄L(U + εb) + ΓRf̄R(U + εb), γb←2 = ΓLf̄L(U + εa) + ΓRf̄R(U + εa).

Here, the Fermi functions are

fL/R(ε) ≡ f(ε− µL/R), f(ε) =

[
exp

(
ε

kBT

)
+ 1

]−1
f̄(ε) ≡ 1− f(ε). (1.29)

We now want to calculate the current in the long time (stationary) limit, where initial
conditions no longer play any role. The stationary current I through the left junction is
obtained from the stationary solution of the master equation, i.e., the stationary values
p0, pa, pb, p2, as

I = −e
{[

γLa←0 + γLb←0

]
p0 +

[
γL2←a − γL0←a

]
pa

+
[
γL2←b − γL0←b

]
pb −

[
γLa←2 + γLb←2

]
p2
}
. (1.30)
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Here, it does not matter whether we calculate the current through the left or the right
junction: both currents are the same due to current conservation (Kirchhoff’s first rule).

It is very easy to solve the system of linear equations Eq. (1.27). The important
ingredients are the transition rates Eq. (1.28).
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Fig. 1.3: Current and number of (spinless) electrons in the linear (left) and the non–linear
(right) transport regime through a quantum dot, modeled as an Anderson impurity
with two energy levels Ea and Eb. The current is in units of −eΓLΓR/(ΓL +ΓR). The
external voltage Φ shifts the energy levels, εa ≡ Ea − Φ, εb ≡ Eb − Φ. The transport
(bias) voltage Vtransport ≡ (µL − µR)/e is kept fixed here. The repulsion energy of two
electrons is U .

1.4.2 Linear Transport

For Vtransport ≡ (µL−µR)/e → 0, the Coulomb blockade oscillations discussed above are
visible as two consecutive peaks at the chemical potentials

µdot(N = 1) = εa − 0 = εa

µdot(N = 2) = εa + εb + U − εa = εb + U. (1.31)

The distance between the peaks is given by the addition energies δE(N) ≡ µ(N)−µ(N−
1) ,

δE(N = 1) ≡ µdot(N = 1)− µdot(N = 0) = εa

δE(N = 2) ≡ µdot(N = 2)− µdot(N = 1) = εb − εa + U. (1.32)

We now consider the particular limit εb, U → ∞. In this limit, things are much
simplified as only 0 and a are involved, and we have

ṗa = γa0p0 − γ0apa, 1 = p0 + pa (1.33)
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In the stationary case, this becomes

p0 =
γ0a

γ0a + γa0
, pa =

γa0
γ0a + γa0

 I = −e
{
γLa0p0 − γL0apa

}
= −e

1

ΓL + ΓR

{
γLa0γ0a − γL0aγa0

}
= −e

ΓLΓR

ΓL + ΓR
{fL(εa)− fR(εa)} . (1.34)

In the linear transport regime, this expression can be further simplified: With

fL(εa)− fR(εa) = f(εa − µL)− f(εa − µR) = f(εa − µL)− f(εa − µL + (µL − µR))

= (µL − µR)(−f ′(εa − µL)) +O(µL − µR)
2, (1.35)

we find

I = −e(µL − µR)
ΓLΓR

ΓL + ΓR

1

4kBT coth2
[
εa−µL
2kBT

] +O(µL − µR)
2. (1.36)

The linear conductance G is defined as the limit µL → µR ≡ µ as

G ≡ lim
(µL−µR)→0

I

−e(µL − µR)
, (1.37)

so that we finally obtain

G =
ΓLΓR

ΓL + ΓR

1

4kBT coth2
[
εa−µ
2kBT

] , linear conductance peak . (1.38)

This expression describes a temperature–dependent resonance peak, when the voltage
Φ and thus the energy εa = Ea − Φ is swept through the chemical potential µ or,
alternatively, εa is kept fixed and µ is changed (see Fig. 1.4).

1.4.3 Non–linear transport regime

The interpretation of the results in the non–linear transport regime is a bit more involved:
First , the chemical potentials are

µdot(N = 1) = εa − 0 = εa

µdot(N = 2) = εa + εb + U − εa = εb + U. (1.39)

for the transition N ↔ N + 1 between groundstates, and

µ′dot(N = 1) = εb − 0 = εb

µ′dot(N = 2) = εa + εb + U − εb = εa + U. (1.40)

for the transitions N ↔ N + 1 between ground and exited states. Now, increasing
the gate voltage increases Φ and the following energies enter into the transport window
[µR, µL]:
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Fig. 1.4: LEFT: Current in the linear transport regime through a quantum dot (as above).
Comparison is made between the exact solution of the master equation(solid lines)
and the analytical form Eq. 1.38 which works well for kBT ≪ ∆E, where ∆E is the
separation between the two levels. As above, the Coulomb repulsion is U = 1 here, and
∆E = 0.5 for the two lower curves, where the agreement is perfect. For a smaller level
separation, ∆E = 0.1 and T = 0.05 (upper curve), the agreement with the analytical
form (for T = 0.05) is not good. RIGHT: Coulomb staircase , i.e. current–voltage
characteristics of the same system for fixed voltage Φ and variable transport voltage
Vtransport ≡ µL − µR.

• First, µdot(N = 1) enters which amounts to one transport channel.

• Then, µ′dot(N = 1) enters which amounts to two channels which is why the current
becomes even larger.

• For the next current peak to occur, one has to increase Φ until µdot(N = 2) (not
µ′dot(N = 2)) enters the transport window: this leads to two transport channels
(large current).

• A further increase of Φ shifts µ′dot(N = 2) out of the window and we are again left
with only one channel.

• A further increase (µdot(N = 2) < µR) then finally leads to zero current.



2. INTRODUCTION TO COUNTING STATISTICS

2.1 Markovian Master Equation for Classical Systems

Let us assume transitions of a system between states n = 0, 1, 2, ..., for example the
population of a species. The transitions shall occur at certain rates,

Γn, forward transition from state n to n+ 1

µn, backward transition from state n to n− 1 . (2.1)

We denote by p(n, t) the probablity to find the system in state n at time t. This
probability changes with time due to the transitions,

ṗ(n, t) = −Γnp(n, t) + Γn−1p(n− 1, t), due to forward trans.

− µnp(n, t) + µn+1p(n+ 1, t), due to backward transitions

= −(Γn + µn)p(n, t) + Γn−1p(n− 1, t) + µn+1p(n+ 1, t), n ≥ 1 (2.2)

ṗ(0, t) = −Γ0p(0, t) + µ1p(1, t).

Such a process is a continuous Markov process (no memory effects), and we call the
differential equation (more precisely: the system of equations) for the probabilities the
Master equation.

The particular case of our simple Master equation Gl. (2.2) is often called a birth-
death process. We can write the equations in matrix form,

ṗ(t) = Mp(t), M ≡


−Γ0 µ1 0 ...
Γ0 −Γ1 − µ1 µ2 0...
0 Γ1 −Γ2 − µ2 µ3....
.. ... ... ...

p(t). (2.3)

If n runs through all integers, this is an infinite matrix. If the process stops at a finite
n = N , e.g. N = 2, this looks like

ṗ(t) = Mp(t), M ≡

 −Γ0 µ1 0
Γ0 −Γ1 − µ1 µ2

0 Γ1 −µ2

p(t). (2.4)

Note that there is no −Γ2 in the right lower corner as with N = 2, there is no transition
from state 2 to state 3. We have tridiagonal matrices M of dimension N +1. The upper
and lower secondary diagonals contain the positive backwards and forwards transitions
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rates, respectively. The diagonal with the negative sum compensates the two secondary
diagonals: the matrix M in fact is singular, the sum of all rows yields zero. This is a
consequence of probability conservation, since we must have∑

n

p(n, t) = 1 d

dt

∑
n

p(n, t) = 0. (2.5)

We can express this by defining

⟨⟨0̃| ≡ (1, 1, 1, 1, ...) (2.6)

 ⟨⟨0̃|p(t) = 1 (2.7)

⟨⟨0̃|M ≡ (1, 1, 1, 1, ...)


−Γ0 µ1 0 ...
Γ0 −Γ1 − µ1 µ2 0...
0 Γ1 −Γ2 − µ2 µ3....
.. ... ... ...

 = 0, (2.8)

M therefore has an eigenvalue zero, the corresponding eigenvector(s) pst are stationary
solutions of the process,

0 = ṗst = Mpst. (2.9)

2.2 Forward process with constant transition rates. Generating function

With constant rates,

Γi = Γ, µi = µ, (2.10)

the solution of Gl. (2.2) becomes particularly simple.
We discuss the case of only forward transitions, i.e., the backward transition rate

µ = 0, forward process (unidirectional). (2.11)

An example would be the transitions of particles from an infinite particle reservoir
(source) into an initially empty second reservoir (drain) at rate Γ. The Master equation
then reads

ṗ(0, t) = −Γp(0, t)

ṗ(n, t) = −Γp(n, t) + Γp(n− 1, t), n = 1, 2, ... (2.12)

where we set p(−1) = 0. This can be most easily solved by introducing a generating
function

G(s, t) ≡
∞∑
n=0

snp(n, t), s ∈ C, (2.13)
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where s is a complex variable (later we will consider values of s = eiχ on the unit circle).
Note that due to normalisation,

G(1, t) = 1, normalisation . (2.14)

Summing Gl. (2.12) over n yields

∞∑
n=0

snṗ(n, t) =
∞∑
n=0

sn [−Γp(n, t) + Γp(n− 1, t)]

= −Γ
∞∑
n=0

snp(n, t) + Γs
∞∑
n=0

sn−1Γp(n− 1, t)

= Γ(s− 1)
∞∑
n=0

snp(n, t). (2.15)

Note that we used the fact that p(−1, t) = 0: there is no state −1. We therefore obtain
a differential equation for G(s, t),

∂

∂t
G(s, t) = Γ(s− 1)G(s, t) G(s, t) = e(s−1)ΓtG(s, t = 0). (2.16)

We need to specifiy the initial condition G(s, 0) in order to have an explicit solution. A
typical choice of initial condition is

p(n, 0) = δn,0, start with 0 particles in the drain reservoir.

 G(s, 0) = 1, (2.17)

but one could also imagine other choices, for example p(n, 0) = δn,m with m > 0.
From G(s, t), we obtain the probabilities p(n, t):

G(s, t) ≡
∞∑
n=0

snp(n, t) p(n, t) =
1

n!

dn

dsn
G(s, t)

∣∣∣∣
s=0

. (2.18)

In our example with G(s, 0) = 1, we obtain

G(s, t) = e(s−1)Γt (2.19)

 p(n, t) =
(Γt)n

n!
e−Γt, Mandel formula. (2.20)

In the context of the theory of the photodetector where the formula describes photons
emitted from a source and detected at rate Γ, it is often called the Mandel formula. In
the context of transport, for example of electrons tunneling between two metals, this is
a simple model for a tunnel junction. The tunnel rate Γ then can be calculated, e.g. in
perturbation theory (Fermi’s Golden Rule), from a microscopic Hamiltonian describing
the tunneling of electrons between two metals.
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Note that Gl. (2.19) describes a Poisson process with parameter Γt. In fact, Γt is
the average ⟨n⟩ of n that can be most easily obtained as follows:

⟨n⟩ ≡
∞∑
n=0

np(n, t) = s
d

ds
G(s, t)

∣∣∣∣
s=1

= s
d

ds
e(s−1)Γt

∣∣∣∣
s=1

= Γt. (2.21)

One can therefore write the Mandel formula Gl. (2.19) as

p(n, t) =
⟨n⟩n

n!
e−⟨n⟩, ⟨n⟩ = Γt. (2.22)

In the following, we discuss sightly more complex situations that lead to other distri-
bution functions p(n, t). Experimentally, one would study p(n, t) in order to learn more
about system parameters, dynamics etc. This is sometimes called transport spectroscopy,
in analogy to (optical) spectroscopy.

2.3 Process with internal states

Let us now assume that we can characterise the states of the system with a multi-index
(α, n), where α denotes the internal state and n the external state of the system.

We consider the example of passengers passing one-by-one from an entrance through
a turn-style onto a station platform. They enter the turn-style at rate Γin and leave the
turn-style at rate Γout. We assume that all passengers move ’forwards’ onto the platform
and no-one ’backwards’ from the platform to the entrance.

We use the indices as follows: index α = 0: turn-style is empty; α = 1 turnstile
is occupied; n number of passengers already passed through onto the platform. The
probabilities p(n, t) now acquire an additional index α. We have

p0(n, t) , probability for turnstile empty and n passengers on platform at time t

p1(n, t) , probability for turnstile occupied and n passengers on platform at time t .

To find a master equation for the probabilities, we re-call what we did for the birth-death
process. We can proceed in an analogous way here;

ṗ0(n, t) = −Γinp0(n, t) + Γoutp1(n− 1, t) (2.23)

ṗ1(n, t) = Γinp0(n, t)− Γoutp1(n, t) (2.24)

Note that the argument n − 1 only occurs once in the first line of these equations. We
write these equations in a more compact form by introducing the column vector

ρ(n, t) ≡
(

p0(n, t)
p1(n, t)

)
ρ̇(n, t) = L0ρ(n, t) + J ρ(n− 1, t)

L0 ≡
(

−Γin 0
Γin −Γout

)
, J ≡

(
0 Γout

0 0

)
. (2.25)
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Definition The matrix J is called jump-operator. Master equations for probabilities
resolved with respect to a number n of jumps are called n-resolved Master equations.

The jump-operator describes the transitions from n − 1 to n, i.e., the ’jumps’ of the
passengers onto the platform at rate Γout.

Before we solve the n-resolved Master equation Gl. (2.23), we introduce another

Definition The probabilities p0(t) and p1(t) in

ρ(t) ≡
∞∑
n=0

ρ(n, t) =

(
p0(t)
p1(t)

)
, reduced probabilities (2.26)

are called reduced probabilities of the system. Furthermore, we define the Full
Counting Statistics (FCS) of the process,

p(n, t) ≡ p0(n, t) + p1(n, t) ≡ Trρ(n, t), Full Counting Statistics (FCS) . (2.27)

Here, the trace over a probability vector is defined by the sum over the probabilities.
In particular,

Trρ(t) ≡ ⟨⟨0̃|ρ(t) = p0(t) + p1(t) = 1. (2.28)

The reduced probabilities contain information on the internal states only, in our example
therefore on the internal state (empty or busy) of the turnstile but not on the number
n of passengers on the platform. In contrast, the FCS contains no information on the
internal state α but information on the external state n.

From Gl. (2.23), we find by summation over n

ρ̇(t) = (L0 + J )ρ(t), Master equation for reduced probabilities. (2.29)

This linear system of ODE with constant coefficients can be easily solved (EXERCISE).
We can do even better and solve the full system Gl. (2.23), again by introducing a
generating function

g(s, t) ≡
∞∑
n=0

snρ(n, t), s ∈ C (2.30)

whereby we obtain

∞∑
n=0

snρ̇(n, t) =
∞∑
n=0

snL0ρ(n, t) +
∞∑
n=0

snJ ρ(n− 1, t)

 ġ(s, t) = (L0 + sJ ) g(s, t). (2.31)

Again, this linear system of ODE with constant coefficients can be easily solved, but now
we have the advantage of finding the full information on the entire process contained in
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one single (vector valued) function g(s, t). We list the quantities of interest,

ρ(t) = g(1, t), reduced probabilities (2.32)

ρ(n, t) =
1

n!

dn

dsn
g(s, t)

∣∣∣∣
s=0

=

∫ π

−π

dχ

2π
e−inχg

(
s = eiχ, t

)
(2.33)

p(n, t) = Trρ(n, t). (2.34)

In the second line, we used the generating function on the unit circle g
(
s = eiχ, t

)
as a

Fourier series representation of ρ(n, t).
We formally solve

ġ(s, t) = (L0 + sJ ) g(s, t) g(s, t) = e(L0+sJ )tg(s, t = 0) (2.35)

by a matrix exponential. We therefore calculate the eigenvalues of

L0 + sJ =

(
−Γin sΓout

Γin −Γout

)
(2.36)

 0 = (Γin + λ)(Γout + λ)− sΓoutΓin

 λ±(s) = −Γout + Γin

2

(
1±

√
1 + 4

ΓinΓout

(Γout + Γin)2
(s− 1)

)
(2.37)

We recognize that for s = 1 one of the eigenvalues, λ−(s), is zero as must be since the
matrix M = L0 + J must be singular (conservation of probability). At large times
t → ∞, this eigenvalue determines the solution g(s, t) = e(L0+sJ )tg(s, t = 0) also for
s ̸= 1. By taking the trace, asymptotically one thus has

Trg(s, t) = Tre(L0+sJ )tg(s, t = 0) ∼ etλ−(s)Trg(s, t = 0), t → ∞, (2.38)

This becomes particularly simple if we choose the initial condition

ρ(n, t = 0) = ρ(t = 0)δn,0  g(s, t = 0) = ρ(t = 0)

 Trg(s, t) ∼ etλ−(s), t → ∞ (2.39)

because Trg(s, t = 0) = Trρ(t = 0) = p0(0) + p1(0) = 1.
In order to calculate the FCS p(n, t) at large times, one has to evaluate the Fourier

integral

p(n, t) = Trρ(n, t) =

∫ π

−π

dχ

2π
e−inχTrg

(
s = eiχ, t

)
∼
∫ π

−π

dχ

2π
e−inχetλ−(eiχ), t → ∞.(2.40)

In general, this must be done numerically. For large n, one can evaluate the integral by
a stationary phase approximation.

However, instead of calculating the full distribution p(n, t), we are often satisfied with
knowing some of its moments µk or cumulants Ck. For example, the first two moments
and cumulants are defined as

µ1(t) ≡
∞∑
n=0

np(n, t), µ2(t) ≡
∞∑
n=0

n2p(n, t) (2.41)

C1(t) ≡ µ1(t), C2(t) ≡ µ2(t)− µ2
1(t). (2.42)
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Fig. 2.1: A quantum point contact (QPC) detects single electrons tunneling through a single
quantum dot. The time-dependent signal is used to construct the probability distribu-
tion p(n, t) of the number n of electgrons tunneled after time t, and its corresponding
cumulants Ck(t), cf. Gl. (2.47). From ??.

Recalling the definition of the generating function, this works for µ1(t) as

Trg(s, t) =
∞∑
n=0

snp(n, t) (2.43)

µ1(t) = s
∂

∂s

∣∣∣∣
s=1

Trg(s, t) = −i
∂

∂χ
Trg

(
eiχ, t

)∣∣∣∣
χ=0

(2.44)

At large times, we use Gl. (2.39) to find

µ1(t) = tλ′−(s = 1) = t
ΓinΓout

Γin + Γout
, t → ∞ (2.45)

We define the stationary current of passengers through the turnstile as

Ist ≡ lim
t→∞

µ1(t)

t
=

ΓinΓout

Γin + Γout
(2.46)

It turns out that the cumulants Ck, rather than the moments µk, are usually a much more
useful way to represent the information contained in the FCS p(n, t). The cumulants are
obtained from

F (s, t) ≡ lnTrg(s, t) = lnTr

∞∑
n=0

snp(n, t), Cumulant Generating Function(2.47)

Ck(t) =

(
s
∂

∂s

)k

F (s, t)

∣∣∣∣∣
s=1

= (−i)k
∂k

∂χk
F
(
eiχ, t

)∣∣∣∣
χ=0

(2.48)

= t× (−i)k
∂k

∂χk
λ−
(
eiχ, t

)∣∣∣∣
χ=0

, t → ∞. (2.49)
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In particular, all cumulants are proportional to the time t at large t: this scaling is a
consequence of the law of large numbers and is in analogy to the corresponding scaling
of cumulants with volume for the grand-canonical ensemble of thermodynamics (see my
lecture notes Thermodynamics and Statistics).

An example where high order cumulants Ck(t) (up to k = 15) have been measured
in a quantum transport experiment is shown in the figure.

EXERCISE: calculate the second cumulant for the two-state process discussed in this
section.

2.4 Transport in Quantum Systems

Let us recall the master equation for the passenger transfer process,Gl. (2.25)

ρ(n, t) ≡
(

p0(n, t)
p1(n, t)

)
, ρ̇(n, t) = L0ρ(n, t) + J ρ(n− 1, t). (2.50)

The state of this classical system at time t is described by a (vector) of probabilities.
In quantum mechanics, the state of a system is described by a density operator ρ̂(t)

at time t that usually is represented as a matrix

ραβ(t) ≡ ⟨α|ρ̂(t)|β⟩ (2.51)

in some basis {|α⟩} of the Hilbert space (we assume finite-dimensional Hilbert spaces in
the following). The diagonal elements of ρ̂(t) are probabilities,

pα(t) ≡ ραα(t). (2.52)

Contrary to the classical case, there are in general also non-diagonal elements of the
density operator. They are sometimes called coherences and reflect the superposition
principle of quantum mechanics: linear combination of Hilbert space vectors are again
Hilbert space vectors.

The classical n-resolved master equations like Gl. (2.50) can be written in a com-
pletely analogous fashion for the quantum case, however with the vector ρ replaced by
the density matrix ρ̂(n, t) and the operators (matrices) L0 and J replaced by superop-
erators, for example

d

dt
ρ̂(n, t) = L0ρ̂(n, t) + J ρ̂(n− 1, t) (2.53)

for unidirectional transport (’forward’ processes only). Here again, a splitting of the total
system into an ’internal system’ and an ’external system’ is assumed, with n referring
to the external system (e.g., the number of particles tunneled into a reservoir) and α, β
etc. refering to the internal (quantum) system.

For practical reasons, however, one tries to avoid the tensorial notation with 4th
rank tensorial superoperators and 2nd rank density operators from the very beginning
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Fig. 2.2: Double quantum dot

by introducing a vectorial representation of the density operator ρ̂,

ραβ →



ρ11
ρ22
..
ρdd
ℜρ12
ℑρ12
...


. (2.54)

Here, the first d elements of the column vector represent the diagonal elements of ρ̂ (d
is the dimension of the internal system Hilbert space), the rest denotes the real and
imaginary parts of the coherences. For example, the trace of the density operator is the
sum over the first d entries of the vector. Correspondingly, the superoperators become
usual square matrices. In contrast to the classical case, in general they now operate not
only on the probabilities but also on the coherences. This leads to a mixing of coher-
ences and probabities. A simple example are the Bloch equations in nuclear magnetic
resonance (NMR), quantum optics, or semiconductor optics. In quantum transport,
similar equations can be derived from microscopic Hamiltonians for electronic transport
through solid state qubits, e.g. double quantum dots.

2.5 Double Quantum Dot

The double quantum dot (charge qubit) is the simplest model where quantum coherence
becomes visible in transport. Spin-polarized electrons move between two tunnel-coupled
levels |L⟩ (left) and |R⟩ (right) attached to fermionic reservoirs. The Hamiltonian is a
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transport version of the spin-boson model (~ = 1),

H = HS +Hres +HT +Hep +Hp (2.55)

HS =
ε

2
σ̂z + Tcσ̂x, Hres =

∑
k,α=L,R

εkc
†
k,αck,α

HT =
∑

k,α=L,R

(V α
k c†k,α|0⟩⟨α|+H.c.)

Hep = σ̂z
∑
Q

gQ
2

(
a−Q + a†Q

)
, Hp =

∑
Q

ωQa
†
QaQ,

with pseudo-spin σ̂z ≡ |L⟩⟨L| − |R⟩⟨R|, σ̂x ≡ |L⟩⟨R|+ |R⟩⟨L|, the ‘empty’ state |0⟩, the
standard tunnel Hamiltonian HT for coupling to the reservoirs Hres, and coupling of the
transport electron in the double dot to a phonon bath Hp via Hep. One can derive a
generalized Master equation in the limit of infinite source-drain bias and in the regime of
strong Coulomb blockade, i.e. with only one additional transport electron in the double
dot.

The Liouvillian in the basis ρ = (ρ0, ρL, ρR,ℜρRL,ℑρRL) has the form

L =


−ΓL 0 ΓR 0 0
ΓL 0 0 0 2Tc

0 0 −ΓR 0 −2Tc

0 γ+ −γ− −ΓR
2 − γ −ε

0 −Tc Tc ε −ΓR
2 − γ


(2.56)

with tunnel rates Γα = 2π
∑

kα
|V α

k |2δ(ε−εkα), α = L/R (assumed as energy-independent),
rates for electron-phonon interaction

γ =
gπ

∆2

[
ε2

β
+ 2T 2

c ∆e−∆/ωc coth

(
β∆

2

)]
(2.57)

γ± = g
πTc

∆2

[
ε

β
− ε

2
∆e−∆/ωc coth

(
β∆

2

)
∓ ∆2

2
e−∆/ωc

]
with a dimensionless coupling constant g, a Debye cutoff ωc, the level splitting

∆ =
√

ε2 + 4T 2
c , (2.58)

and the inverse temperature β = (kBT )
−1. These electron-phonon rates correspond to

a bosonic environment with Ohmic spectral density

ρ(ω) = gωe−ω/ωcΘ(ω). (2.59)

Quantum coherence enters via Tc in the off-diagonal terms outside the upper left three-
by-three block in Gl. (2.56).
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Fig. 2.3: LEFT: Double quantum dot (Γe = ΓL, Γc = ΓR); CENTER: Measured current I and
Fano factor F ; RIGHT: Calculated I and F . From G. Kießlich, E. Schöll, T. Brandes,
F. Hohls, and R. J. Haug, Phys. Rev. Lett. 99, 206602 (2007).

In the stationary limit t → ∞, one can now easily calculate the cumulants Ck(t → ∞)
that we introduced above. Of particular interest are C1 and C2, as these can be compared
to experimental results for the stationary current I and the stationary Fano factor F ,

I ≡ −e lim
t→∞

C1(t)

t
, F ≡ lim

t→∞

C2(t)

C1(t)
. (2.60)

Without electron-phonon interaction, the current is given by

I = −e
T 2
c ΓR

Γ2
R/4 + ε2 + T 2

c (2 + ΓR/ΓL)
, Stoof-Nazarov formula. (2.61)

(T. H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 1050 (1996)). As a function of the
internal bias ε, this simply is Lorentzian. Some results from a recent comparison with
an experiment are shown in the Figure.

A particular limit (not realised experimentally, though) is

lim
ΓR→∞

I = 0, quantum Zeno effect, (2.62)

which can be interpreted as a quantum Zeno effect for permanent observation of the
charge qubit by the drain (right) reservoir. The electron is localised on the left dot in
this limit.



3. INTRODUCTION INTO FEEDBACK CONTROL
OF QUANTUM TRANSPORT

3.1 Trajectories and n-resolved Master Equation

In the following, we will always assume a Markovian Master equation. For simplicity, we
discuss a situation with a single jump superoperator J , e.g. as in the double quantum
dot case in the infinite bias limit discussed above. The Master equation thus is

ρ̇(t) = (L0 + J ) ρ(t). (3.1)

This can be formally solved as follows: we define

ρ̄(t) ≡ e−L0tρ(t), L̄1(t) ≡ e−L0tJ eL0t (3.2)

 d

dt
ρ̄(t) = −L0ρ̄(t) + e−L0t (L0 + J ) eL0tρ̄(t) = L̄1(t)ρ̄(t)

 ρ̄(t) = ρ(0) +

∫ t

0
dt1J̄ (t1)ρ̄(t1)

= ρ(0) +

∫ t

0
dt1J̄ (t1)ρ(0) +

∫ t

0
dt1

∫ t1

0
dt2J̄ (t1)J̄ (t2)ρ̄(t2)

...

= ρ(0) +
∞∑
n=1

∫ t

0
dt1...

∫ tn

0
dtnJ̄ (t1)...J̄ (tn)ρ(0). (3.3)

Transforming back to ρ(t), we can explicitely write this as

ρ(t) = eL0tρ(0)

+
∞∑
n=1

∫ t

0
dt1...

∫ tn

0
dtne

L0te−L0t1J eL0t1e−L0t2J eL0t2 ...e−L0tnJ eL0tnρ(0)

= eL0tρ(0)

+
∞∑
n=1

∫ t

0
dt1...

∫ tn

0
dtne

L0(t−t1)J eL0(t1−t2)J eL0(t2−t3)...eL0(tn−1−tn)eL0tnρ(0)

≡ eL0tρ(0) +
∞∑
n=1

∫ t

0
dt1...

∫ tn

0
dtnρc(t; t1, ..., tn), (3.4)

where we defined the un-normalised, conditioned ‘density matrix’ ρc(t; t1, ..., tn) at time
t with n quantum jumps occuring at times t1, ..., tn. This object (the underlined term
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in Eq.(3.4)) indeed corresponds to the original density matrix ρ(0), ‘freely’ time-evolved
with the effective Hamiltonian Heff during the time intervals (0, tn], (tn, tn−1],... inter-
rupted by n ‘jumps’ at times tn, tn−1, ..., t1. The total density matrix ρ(t) at time t then
is the sum over all possible ‘trajectories’ with n = 0, ...,∞ jumps occuring in between a
‘free’, effective time evolution. This defines the Full Counting Statistics (FCS), i.e. the
probability distribution p(n, t);

ρ(t) =

∞∑
n=0

ρn(t) p(n, t) ≡ Trρn(t). (3.5)

We mention that the first ideas for this n-resolved Master equation were already devel-
oped in the early 1980s by Cook and others in their analysis of resonance fluorescence
from single atoms.

The n-resolved Master equation (without feedback)

ρ̇n(t) = L0ρ
n(t) + J ρn−1(t) (3.6)

is formally solved by introducing a counting field χ and a χ-dependent generalization
ρ(χ, t) of the density matrix ρ(t),

ρ(χ, t) ≡
∞∑
n=0

einχρn(t) (3.7)

ρ̇(χ, t) = (L0 + eiχJ )ρ(χ, t), ρ(0, t) = ρ(t). (3.8)

In the following, we will present three routes for introducing feedback control into Marko-
vian Master equations. All of them will be based on the notion of a ‘quantum jump’,
i.e., the jump superoperator J will play a central role in each of them.

3.2 Earlier Form

One of the historically earlier forms of feedback control in Master equations is due to G.
J. Milburn, J. Mod. Opt 38 (10), 1973 (1991), in which a kind of saturation effect in
photodetection was introduced in a theory of a photodetector with rates that depended
on the number n of detected photons. We will not discuss this model in detail but rather
extract the main idea: Essentially, the number n in Gl. (3.7) is a bath variable - it is
even the only variable of the bath that is continuously monitored. Summing over all
n amounts to fully tracing out this information, which yields the usual, not-n-resolved
Master equation. Therefore, a natural way to introduce some specific form of control is
to assume some backaction from the bath onto the system that depends on the number n,
i.e. on the number of quantum jumps (photons, phonons, electrons or other, depending
on the form of the jump operator J ). The generic form of such a feedback control Master
equation then becomes
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Fig. 3.1: Wiseman-Milburn feedback in transport through a double quantum dot (C. Emary, C.
Pöltl, unpublished, 2010).

ρ̇n(t) = Lnρ
n(t) + Jnρ

n−1(t), (3.9)

where the jump- and non-jump operators now depend on the index n. This form of
Master equation can, at least in principle, be derived from a microscopic system-bath
Hamiltonian by assuming some specific kind of interactions involving a bath number
operator N̂ with eigenvalues n. The interaction parameters would then lead to, e.g., a
functional dependence of transition rates or energies appearing in Gl. (3.9) on n. Note
that the form Gl. (3.9) includes a wide range of possibilities. One primitive control
mechanism could consist, e.g., in the strong suppression of every second quantum jump
by making transitions rates depend on parity (odd or even n).

3.3 Wiseman-Milburn Feedback Scheme

Wiseman and Milburn introduced a feedback scheme that relies on the concept individual
quantum jumps. Essentially, their idea is as follows: after each quantum jump, as
described by the operation J ρ on the density matrix, a certain unitary operation is
performed on the system, for example the immediate rotation of a qubit about a fixed
angle in qubit space after the emission of a particle, cf. the example discussed below.
Delays can also be built in but lead to more complicated forms. The Wiseman-Milburn
feedback scheme can be formulated in a Master equation

ρ̇(t) = L0ρ(t) + eKJ ρ(t). (3.10)

Here, ρ(t) is the trajectory-averaged density operator at time t, and eK is the new
superoperator that acts right after the quantum jump. This is done in such a way
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that Gl. (3.10) is still a ‘good’ Master equation (usually of Lindblad form), but with
qualitatively new features as compared with the case K = 0. This allows one, in quite a
transparent and direct way, to model an external operation conditioned on the occurence
of a quantum jump. As the result of this operation depends on the state ρ(t) at time t,
it is justified call this feedback control.

From the point of view of counting statistics, there exists a further motivation of
this approach. We recall how the counting field χ was introduced in the eom ρ̇(χ, t) =
(L0 + eiχL0)ρ(χ, t), cf. Gl. (3.7). The Wiseman-Milburn form Gl. (3.10) thus upgrades
the (complex) counting variable to a super-operator K. The detector that previously did
nothing else but counting now becomes an active device that controls the system.

A recent application of these ideas to transport through a double quantum dot
(charge quibit) is shown in the Figure. This is a ‘transport version’ of similar work
by J. Wang, H. M. Wiseman (2001) in an optical two-level system. In the transport
case, an interesting observation is the following: parameters can be chosen such that one
can generate nearly pure charge qubit state (on the surface of the Bloch sphere that is
obtained by projecting out the empty state |0⟩, e.g. in the ΓL → ∞ limit.)

3.4 Continuous Feedback in Quantum Transport

Here I refer to some recent work: T. Brandes, Phys. Rev. Lett. 105, 060602 (2010).



4. FURTHER READING

For an introduction into quantum transport, there is the recent textbook by Blanter and
Nazarov. For some more specific material related to these lectures, also see my web-page
at TU Berlin. There is a review article, Physics Reports 408/5-6, pp. 315-474 (2005),
and there are also some lecture notes by Clive Emary on quantum transport (see his
web-page).
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