In the first lecture, we learned about circuit QED applied to quantum computing

[A. Wallraff et al., Nature 431, 162 (2004); A. Blais et al., Phys. Rev. A 69, 062320 (2004)]

Often a technology developed for one particular application can find other unexpected applications

In the next two lectures, will give two examples of other applications of circuit QED

II. cQED and the Quantum-Classical Correspondence

"Determining the border between the quantum world ruled by the Schrödinger equation and the classical world ruled by Newton's laws is one of the unresolved problems of physics."

[W.H. Zurek, Physics Today, October 1991, p. 39]

Wish to prepare a mesoscale mechanical resonator in a quantum superposition state and then watch it become classical.

[M.D. LaHaye et al., Science 304, 74 (2004)]

Environmental decoherence at mK temperatures: two level systems, phonon radiation into supports,....

Use superconducting qubit to drive and probe mechanical resonator in a superposition state [A.D. Armour, M.P.B. & K.C. Schwab, PRL **88**, 148301 (2002)]

But charge basis states strongly affected by environment noise. Instead use charge degenerate basis states: [E. Buks and M.P.B., PRB **74**,174504 (2006)]

$$\ket{\pm} = rac{1}{\sqrt{2}} \left(\ket{0} \pm \ket{1}
ight)$$

Resulting (dispersive) qubit-mechanical resonator Hamiltonian:

$$H = \Delta \sigma_z + \hbar \omega_1 \sigma_z a^{\dagger} a + \hbar \omega a^{\dagger} a$$

Coupling

Mechanical Resonator

Qubit basis states shift oscillator frequency

Qubit

Evolution of mechanical resonator assuming coherent state and no decoherence (for simplicity)

Evolution of mechanical resonator initially in displaced thermal state

What might we observe in an actual experiment?

Probability of qubit to be in $|+\rangle$ state vs time (with initial and final $\pi/2$ rotations on qubit)

Coplanar waveguide-based realization of scheme

"Warm-up" investigation: quantum versus classical dynamics of a strongly nonlinear, low noise cavity-Cooper pair transistor system (no mechanical resonator)

Mechanical equivalent: oscillator-driven pendulum system

$$\gamma_{\pm} = (\varphi_1 \pm \varphi_2)/2$$

$$\begin{aligned} \mathcal{H} &= \frac{p_{+}^{2}}{2M_{+}} + \frac{1}{2}M_{+}\omega_{+}^{2}\gamma_{+}^{2} + \frac{p_{-}^{2}}{2M_{-}} + M_{-}\omega_{-}^{2}\cos\gamma_{-}\cos(\gamma_{+} + \omega_{d}t) \\ &\omega_{d} &= \frac{L}{L_{b}}\frac{eV_{dc}}{\hbar} \\ &\frac{M_{+}}{M_{-}} = \frac{R_{K}}{Z}\frac{E_{C_{J}}}{\hbar\omega_{0}} = \frac{2C}{C_{J}} \gg 1 \qquad \qquad \frac{\omega_{-}}{\omega_{+}} = 2\frac{\sqrt{E_{J}E_{C_{J}}}}{\hbar\omega_{0}} \gg 1 \end{aligned}$$

Have slow, massive oscillator (cavity mode: phase coord. γ_+) interacting with fast, low mass pendulum (CPT: phase γ_- , charge $N = -p_-/\hbar$ coords.).

Drive frequency ω_d tuned by varying external dc bias V_{dc} . No external rf drive required (self-oscillating via ac Josephson effect) \Rightarrow low noise \Rightarrow macroscopic quantum effects in strongly nonlinear system (?)

$$\omega_d = \frac{L}{L_b} \frac{eV_{dc}}{\hbar}$$

Analysis of classical versus quantum dynamics in progress...

Experiment (in progress)

[A. Rimberg et al., (2011)]

Other cQED-mechanical schemes

•Using driven CPW to cool a mechanical resonator close to its ground state of motion [T. Rocheleau *et al.*, *Nature* **463**, 72 (2010)]

•Generation and detection of a mechanical resonator in (quantum) ground, single phonon and superposition states [A. O'Connell *et al.*, *Nature* **464**, 697 (2010]

•Strongly coupled cQED-mechanical system [J. Teufel *et al.*, *arXiv*:1011.3067 (2010)]

