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e Decoherence (T1) suppression by uncollapse
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Undoing a weak measurement of a qubit

(“uncollapse”)
A.K. & Jordan, PRL-2006
m&ggﬁt It is impossible to undo “orthodox” quantum
"\ measurement (for an unknown initial state)
i Is it possible to undo partial quantum measurement?

(To restore a “precious” qubit accidentally measured)
Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

cuccesstW 1w (still
v weak (partial) L 41 / unknown)
0 >| (partially |__UNsucceggp,

measurement
fueriopyn) collapsed) \ v,

uncollapse
(information erasure)
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Quantum erasers in optics
Quantum eraser proposal by Scully and Driithl, PRA (1982)

A /‘?DETEC!’DR

Y, Y,
| ‘ ELECTRO-OPTIC t
'/ SHUTTER\
'/ \ I\ f\ /”i: open shutter:
2 — // . .
! 3/ @ clicks - fringes,
‘ | (@) o verecior | // ® does not click —
antifringes,
a a .
) oy . v . b average — no frlnges
I Y b b ¢
. b — L FIG. 2. Laser pulses /| and /; incident on atoms at
Frlnges No frlnges Fringes if | sites 1 and 2. Scattered photons ¥, and ¥, result from
{b) tt B |eft I ) 2 a—b transition. Decay of atoms from b'—sc results in
( rac € ) el’aées It ¢ photon emission. Elliptical cavities reflect ¢ photons
FIG. 1. (a) Figure depicting light impinging from left onto common photodetector. Electro-optic shutter
on atoms at sites 1 and 2. Scattered photons y, and y, transmits ¢ photons only when switch is open. Choice
produce interference pattern on screen. (b) Two-level of switch position determines whether we emphasize
atoms excited by laser pulse [|, and emit ¥ photons in particle or wave nature of ¥ photons.
a —b transition. (c) Three-level atoms excited by pulse )
I, from ¢ —sa and emit photons in @ —b transition. (d) : _
Four-level system excited by pulse /; from ¢ —a fol- Interference fringes restored for two-detector
lowed by emission of y photons in « —b transition. correlations (since “which-path” information
Sccond pulsc /, takes atoms from b—b'. Decay from )
b'—c results in emission of ¢ photons. IS eraSEd)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it
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Evolution of a charge qubit
(@) ®

AT

P10 _ P11(0)
P (1) Py,(0)

P _ onst
NERGENG
where measurement result r(t) is *
N,

r=0.5 =1
(t)-—[j' 1(t") dt' - 1,t] '
0 Jordan-A.K_-Bittiker, PRL-06

———exp|2r(1)]

If r =0, then no information and no evolution!
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Uncollapse of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement is
non-unitary, so impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

|_1_> 1)
e v
| 0) | 0)

need ideal (quantum-limited) detector

. : (Figure partially adopted from
(similar to Koashi-Ueda, PRL-1999) Jordan-A K_-Biittiker, PRL-06)
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Uncollapsing for qubit-QPC system

A.K. & Jordan, 2006

First “accidental” Uncollapsing
measurement measurement

r(t) < < >

2) 1)
O—0O

Qubit
| (t)v (double-dot)

Detector

(QPC)

(t)——[jol(t')dt'—lot]

Simple strategy: continue measuring until r(t) becomes zero!
Then any unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that r=0 never happens;
then undoing procedure is unsuccessful.
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Probability of success

Trick: since non-diagonal matrix elements are not directly involved,
we can analyze classical probabilities (as if qubit is in some
certain, but unknown state); then simple diffusion with drift

Results: .|
e 0

Probability of successful ~ Pg = T =y
uncollapsing e Vo, (0)+e "p,,(0)

where 1, is the result of the measurement to be undone,
and p(0) is initial state (traced over entangled qubits)

Larger |r,| = more information = less likely to uncollapse

Averaged probability P,y =1-erf[\/t/2T,]

of success (over result r\) (does not depend on initial state; cannot!)

where Tm — ZSI /(Al )2 (“measurement time”)
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General theory of uncollapsing

- MrPM;L
POVM formalism  Measurement operator M,: 2 —> 7
(Nielsen-Chuang, p.100) Tr(M, pM/,)

Probability: P, =Tr(M, pM;f) Completeness : Zr I\/Ifl\/lr =1

(to satisfy completeness,

_ -1
Uncollapsing operator: Cx My eigenvalues cannot be >1)

max(C) = min, \/Fi, p; —eigenvalues of MM,

min; p; minP
Probability of success: | Ps < —— Pi _ " | AK.&Jordan, 2006
Pr(pin) I:)I’(loin)

P.(pi,) — probability of result r for initial state p,,,

min P, — probability of result r minimized over
all possible initial states

(similar to Koashi-Ueda, 1999)
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General theory of uncollapsing (cont.)

Overall probability: result r and successful uncollapsing

|55 = Pl pjn] x Ps

It cannot depend on initial state
(otherwise we learn something after uncollapsing)

Exact upper bound: ﬁs < min P,

(probability of result r minimized over initial states)

Averaged (over r) overall probability of uncollapsing:

Ps.av = Z min P,
(independent of initial state as well)

Characterization of (irrecoverable) collapse strength:
1-Pg,, =1-) minP,
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Comparison of the general bound for
DQD-QPC uncollapsing success

General bound: P, < min F,
I:)r [0(0)]

min (Py, P,)
P1£11(0) + P,05,(0)

where P; = (7S, /1) exp[-(T - 1,)*t/S,1dTl

= for DQD+QPC P <

=Tl

e Al t ' '

Actual result:  Pg = = S [IO (t")dt' —1,t]
|

I -l
e 0|,011(0) e 0l,ozz(())

The two results coincide, so the upper bound is reached,
therefore uncollapsing strategy is optimal
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% Uncollapsing of evolving charge qubit

HW ¢ n

o° Hog = (£/2)(c/c, - ¢;¢,) + H(c[c, +cic))

% (now non-zero H and &, qubit evolves during measurement)
1 (1)

1) Bayesian equations to calculate measurement operator
2) unitary operation, measurement by QPC, unitary operation

More general: uncollapsing
for N entangled charge qubits

1) unitary transformation of N qubits

2) null-result measurement of a certain strength by a strongly
nonlinear QPC (tunneling only for state |11..1))

3) repeat 2N times, sequentially transforming the basis vectors
of the diagonalized measurement operator into [11..1)

(also reaches the upper bound for success probability)

Jordan & A.K., Contemp. Phys., 2010 ,
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No experiment yet for DQD-QPC system,
but uncollapsing has been demonstrated
for a superconducting phase gubit
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Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB,
now at Hebrew University)

Flux < é I“ - %{M “x%qilons >
Iuw

bias I AN >
Qubit Reset Compute Meas. Readout
X o \J /‘\\_
I

v

Repeat 1000x
prob. 0,1
|

v
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Partial collapse of a Josephson phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,
R. McDermott, M. Neeley, M. Steffen, E. Weig,
A. Cleland, J. Martinis, A. Korotkov, Science-06

How does a qubit state evolve
|0> In time before tunneling event?

(What happens when nothing happens?)
Qubit “ages”, in contrast to a radioactive atom

Main idea: | out), if tunneled
_ _ _Tt/2_ip
y=al0)+f]1) > y)=- a|0)+pe © |1>,ifn0ttunneled
Jal+| 8P

(better theory: Pryadko & A.K., 2007)
amplitude of state |0) grows without physical interaction
finite linewidth only after tunneling

continuous null-result collapse
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
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Experimental technique for partial collapse
Nadav Katz et al.

- - [fast SQUID | b Operation (John Martinis group)
state ql}blt . amplifier
control ~'@% sy s Vso Protocol:

J Il ) B 1) State preparation
__________________________ 300K (via Rabi oscillations)
_____________________________ 4K : 2) Partial measurement by

| lowering barrier for time t

otas] 3) State tomography (micro-
wave + full measurement)

trick: subtract probability

1 25mK | | Lo = Lac! Measurement strength

d State Partial Tomography & Final measurement . p — 1 B exp(-rt )
preparation  § "o 1 (6,6) | IS actually controlled
: : : by I', not by t
/ ! "
¢ ] ] ]
] : : =0: no measurement
L, . MNVW\,: P=0: no measureme
7ns 1 15ns  tioms i toms p=1: orthodox collapse
15/36 K
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Experimental tomography data
Nadav Katz et al. (UCSB, 2005)

1 3 \
Dousdiruen smolitude |01 ih]
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Azimuthal angle  Polar angle

Visibility

Mormalized visihility
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Partial collapse: experimental results
N. Katz et al., Science-06

e In case of no tunneling

lines - theory phase qubit evolves

dots and squares — expt. s
no fitting parameters in (a) and (b) e Evolution is described

a

o1 02 03 04 05 08 07 08 05 | by the Bayesian theory
Farial measurement probability g . .
probability p  without fitting parameters

p=0.25

|

e Phase qubit remains
coherent in the process
of continuous collapse

0.8g
'-‘_"1_. Tl - & . >

03 B = o 1 (expt. ~80% raw data,
heasure pulse amplitude c’i‘h*’maxm pulse ampl ~96% Corrected for T11T2)

' i

in (c) T1—110 ns, T2—80 ns (measured) quantum efficiency

a

7> 0.8

0. 1 IZI.E a. 3 0. 4 EI ] a. E 0. F" 0. B 0. 9 1
Fartial measurement prabability o
probability p
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Uncollapse of a phase qubit state

A.K. & Jordan, 2006
1) Start with an unknown state

2) Partial measurement of strength P
3) m-pulse (exchange |0) <> |1))
4) One more measurement with

the same strength p p=1- oIt
5) m-pulse
1) T
If no tunneling for both measurements, 0)

then initial state is fully restored!

1) -I't/2 1
al0y+ g1y —» W*eFe 1,
Norm
i) __Tt/2 i o —Tt/2 |
et 0)+e € 1
e fe 10 e @al0)+ i)
Norm

phase is also restored (spin echo)
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Experiment on wavefunction uncollapse

. N. Katz, M. Neeley, M. Ansmann,
oreparation omograpny ¢ R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Matrtinis,

T
|—\/WW\’ W/\, ,\/WWW\/_> and A. Korotkov, PRL-2008
LW

Nature News
ature=2008

Uncollapse protocol:

- partial collapse

- m-pulse

- partial collapse
(same strength)

State tomography with
X, Y, and no pulses

_10+]1)

Tomographic probabilities

05 "> PASATT i ‘//in
Background P should
wrong uncollapsed | be subtracted to find

86 0.08 0.1 0.12 0.14 ubit density matrix
Partial meas. pulse amp. [V] . y
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Experimental results on the Bloch sphere

Initial ) 10)—1]1) | 0)+ [ 1) N. Katz et al.
state N D | 0)
Zﬁ%\ _ _

) = S 2 A d) N
Partially @)L %:Q ( )%??%S&
collapsed 1 - g N

Los 05
> i
0 - UI—J
- %5 1 005 1
()M () ZATS 27 (h) 2
Uncollapsed }%, ! . r
. SRS
uncollapsing 1 S
works welll 05 05
ghi._ ol ol oI
0051 0051 0051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution
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Quantum process tomography

N. Katz et al.
~ magyy  (Martinis group)

Real[y] -

(&)}
w £
o wn 1 T T T T T T T T T
Al b uncollapsing works .
1ol (b)  with good fidelity!
R | | | | | [ I I |

-] 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 1

partial meas. prob. p

Why getting worse at p>0.67?
Energy relaxation p.=t/T,=45ns/450ns = (.1
Selection affected when 1-p ~ p,.

Overall: uncollapsing is well-confirmed experimentally
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Experiment on uncollapsing

using single photons
Kim et al., Opt. Expr.-2009

! "Dark pon”
i a .
: | BP I wp
':m':-i Eg 1 ; D
T e | |
:"aimis*ij :'“3;;?::1?:'3' | PeresisOmemion | | synccapny
@ ® © @ Sy T
pd Z™
: - ¥ | ® 4,
' | e * o
L 0.9 I
- ey
O = 08
: i =07
L | 0.6
- : " 0.4 0.5 0.6 0.7 0.8 09 1.0
' ’ : Partial Collapse Strength (o)
ol | —wevas Y —SEaE
| < | v . . .
| ! | e very good fidelity of uncollapsing (>94%)

e measurement fidelity is probably not good
(normalization by coincidence counts)
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Suppression of T,-decoherence
by uncollapsmg AK. & Keane,

: T
Protocol: T N

—/‘IM)rage period t /J_

(zero temperature)

I . |
partial collapse uncollapse
towards ground (measurem.
state (strength p)  strength p,)

(almost same as existing experiment!)

|deal case (T, during storage only, T=0)
for initial state |y, )=a |0) +f |1)
lwo= |w,,) with probability (1-p)e
= [0) with (1-p)2|B[2eVT(1-eT2)

-t/T1

procedure preferentially selects
events without energy decay

Trade-off: fidelity vs. selection probability

Alexander Korotkov

QPT fidelity (FyS, F,)

PRA-2010
10 1 1 1 1 1 1 r)

1 Ideal AT (1-D) AT
0.9 p V° almost
0.8 cempleie

- o P -Suppression
0.7 e e UTi_ 03l
06-"“'7""':"":"—" ..... W.I.t.I:I.QUt . -_

) uncollapsing
°%0 02  o0a 06 08 10

measurement strength p
Unraveling of energy relaxation
|,3|2 e~ aﬂ*e—t/ZTl
a*ﬂe—t/le 1—|,3|2 e~ Ui
=Py |00 +(1—py) [y XY |
—t/T
where P =IBI (1-e 1)
- ~t/2T;
lw) =(a|0) + fe |1))/ Norm
-t/T
> optimum: 1-p,=¢e 1(1-p)
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An issue with quantum process
tomography (QPT)

QPT fidelity is usually F, =Tr - Analytics for the ideal case
y 4 Adesired X

where 7( is the QPT matrix. Average state fidelity

However, QPT is developed for a linear g 1.1 Ind+C)
quantum process, while uncollapsing av = C C?
(after renormalization) is non-linear. “Naive” QPT fidelity

A better way: average state fidelity F = _l+ 1 n 4+C

£ 4 41+C) 2(2+C)
Fav = Tr(oUy lvinXvin D d [yi) where C =(1-p)1—eTh

Without selection p,=1-¢ Ft(l p)
_ S (d + 1) Fav _ 1.0 . L . L
FZ Fou = r , d=2 . ,] Ideal e Tx(x o
. - L o
Another way: “naive” QPT fidelity 07 o] o Y. T i
(via 4 standard initial states) Th 0'6_'M_,__.__;__—__;__j_j____yy_l_t_hput e =031
o a uncollapsing
The two ways practically coincide 0.8 T T
(within line thickness) measurement strength p
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Realistic case (T, and T at all stages)

> 1.0 :
= figellty
© 0.8 — S
Q 1-p, )k x,= (1-p)k,x as In
S - (1-p,)xr,= (1-p)x;, - oxpt
O ;
< e swithout
= uncollapsing _ _
L 04T-I-.pr abi e Easy to realize experimentally
] *= 211 iy (similar to existing experiment)
= -t /T s -
o 0.24 K =6 i’ Sy - 99. 0.
O k,=ee Tl e Improved fidelity can be observed
0.0 T T T T T T T T |- - -| . . .
o0 02 04 06 08 1o With just one partial measurement

measurement strength P

e To-decoherence is not affected Uncollapse seems the only way
to protect against T,-decoherence

e fidelity decreases at p—1 due to T, : :
without quantum error correction
between 1st n-pulse and 2nd meas.
A.K. & Keane, 2010

Trade-off: fidelity vs. selection probability
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Some other related effects,
proposals, and theories
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Crossover of phase qubit dynamics
in presence of weak collapse and uwaves

@O =

qubit SQU]D
purity P = x? +y +Z
murlty M= (X +0y )/(1

y

—025
1.0 +
(a)' (b) I
0.8 4 — L
> P,=03] PE09 M
= 067 0.5 -
= 0.7
vy 0 0.9] p|1—05 M i
0.2 099 TR
M0 nuII result [
0.0 f L B - T T T T T y
0 2 4 It 6
1.0 TR M
0.3*‘
g 0.6
é 0.4
a
0.2
1 M=0 ¥
0.0 1= T LI I L L T T T
0 1 2 3 0 2 3 4
T, t/T,

Evolutlons due to null-result
measurement and relaxation

are clearly distinguishable
Alexander Korotkov

R. Ruskov, A. Mizel, and A.K., 2007

Null-result measurement + Rabi oscillations

h=05 *|1*> ) P (uwaves)
jy
11> " 1>
under-critical over-critical
(weak pwaves) | - (strong pwaves)
h= 2Q,
I'

& <
\
\\\\\
\‘\\s\ R

SR
SRR

%
\\\\\\ ‘\‘

Crossover between aslymptotic stability

and non-decaying oscillations
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Bayesian formalism for N entangled qubits
measured by one detector

! Up to 2N levels

gb1 gb2 b b N
_ _TI___ _____ I ______ - _I ______ q_I_ — PO of current
detector — >
I(t)
d -1~ 1 I, + 1
aPi = e Pl 2y g 2 el 0O = =500 = 1)+
I+ 1,
+(1(t) - kz D = 11-7ip; (Stratonovich form)

yi =@ =D, = 1)) /45, (1) =D 2 (D1 +&(1)
Averaging over (t) = master eqluation

No measurement-induced dephasing between states |[I) and |]) if ;=1 j !

A.K., PRA 65 (2002),
PRB 67 (2003)
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Two-qubit entanglement by measurement
Ruskov & A.K., 2002

. entangled | I(t)
' | qubit 1 qubit 2 : Voga'p VTI(t) Vb
e e s el P | 1 Elj I
— Np 151
detector N 0,320 @, 220 — ——
1(t) HadE S B3 |T|¢Hb

DQDa QPC DQDb qubita SET qubith

Symmetric setup, no qubit interaction

Two evolution scenarios:

1.0 1 1 1 1 1 1 1 1 1 L | @O 4
. 2
0.8 B 0 1 )
= entangled, o
0.6 - 121
3] P=1/4 | ] .
< ] i mol‘g)_- Peak/noise
" 3 = (32/3)1
0.2 - A 4-:
- oscillatory, P=3/4 | 2-
0.0 —T1T r 1 1 1 1 17 0 . T -
0 10 20 3OQt4O 50 60 70 0 L /O 2

Collapse into |Bell) state (spontaneous entanglement)
with probability 1/4 starting from fully mixed state
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Quadratic quantum detection

V(9)

Mao, Averin, Ruskov, A.K., PRL-2004

RV guadratic
— —— Cx
HalEF B3 |—|¢
SED 5 54
e Ihi
qubita SET qubith bias L A R
, ! , | . q01¢
S 6] i .
L, ’\ . Nonlinear detector:
= 4 [
E 2 N - spectral peaks at €, 2€) and 0
U) O ! | ' T T
0 1 o/Q 2 3

Quadratic detector:
Peak only at 20}, peak/noise = 41

40%(AN*T
(0> —40%)? + T w?

(o))

S| ()/S,
A

Sj(w) =35+

onN

0 1 /QQ 2 3
Three evolution scenarios: 1) collapse into [TV —{T), current I, flat spectrum
2) collapse into [TT — L), current 1,4, flat spectrum; 3) collapse into remaining
subspace, current (I, +1,4)/2, spectral peak at 2Q

Entangled states distinguished by average detector current

Universitv of California. Riverside
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Qubit monitoring via
3 complementary observables

dF evolution
r . ., 2 v ro
0 —==2vr+aju(t)(1—-r")—[r x|r x u(t
Z-detector [ dt }/ { ( )( ) [ [ ( )]]}
) a — coupling, y - extra dephasing
Y -detector —Y‘? - . . . .
State pu'rlflcatlon simple monitoring
1.0 - Z’ 1.0 -
0.8- =11 :?"; 0.8+ i
ux(t) Z - = .
X-detector > 'E 0.6 n = (0.5 _ &.;n 0.6 L
= .
(=B b " o . .
041 /1in=1+2yr, . [ £ red: exponential =
0.2- n=0.1 } g 0.2 n=0.1L
|sotropic evolution, 0.0 Y 'blue: rectalngular
. . . . T ¥ ¥ ¥ 1 T v T T . ¥ LI ¥ Li— L
3 times faster purification, o 1 2 auvera - tilme e 2)
good fidelity of simple time (t/tmeas ) sing meas
monitoring (up to 0-94) Ruskov, Korotkov, Molmer, PRL-2010
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Binary-output qubit detector
(non-destructive, single-shot)

General characterization
general POVM (superoperator) for each result:

16 +16 — 4 = 28 real parameters to describe (too many!)

28 = 2 (meas. axis) + 2 (fidelity) + 2x3 (unitary) + 2x9 (decoherence)
\ Fo,— prob. to get O if |0>
Simplifications: F, —prob. to get 1 if |1>

1) Textbook projective only 2 parameters (meas. axis)

2) Perfect fidelity Fy=F;=1; then only meas. axis is interesting
(6 more parameters affect only reinitialization)

3) QND |0)—|0), |[1)—>|1); then 6 parameters
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QND binary-output detector AK. 2008

6 parameters: fidelity (F,, F1), decoherence (Dy, D4), and phases (g, ¢;)

D, _id

result 0: [Poo Pm)_)i(lzopﬂo \/FO(I—Fl)e g 0P01]
Pro Pn PO C.C. (1_F1)P11 (Slmple
] Bayes)

-D. i
Poo pmj N 11 A=-Fy)py \/(1— Fo)F e 1e|¢11001
Pro  Pu P C.C. Fo1

Po = Fopge + (1=F) oy Pr=0=F))py + Fop

result 1: [

Corresponding quantum limits

| after | 1 | p(z)lfter | 1
result 0: Poi < \/FO (1-F,) resultl: < 5 \/Fl 1-F)
|p01 | PO | after | |p01 | !
ensemble decoherence: :|001 | < \/ F,A-F)+ \/ 1-F)F
Po1

natural to introduce quantum efficiencies by comparing with quantum limits
(easy to realize ny=1, but difficult ny=n,=1)

Alexander Korotkov Universitv of California. Riverside



Natural definitions of quantum efficiency
(actual decoherence vs. informational bound)

Ensemble decoherence
(averaged over result, n= Dmin / Dav
similar to the definition

for linear detectors)

D

Also for each result 1-n,= 0

of measurement DO —In \/Fo(l -F)
Dl

1-n, =
g D, —In[(1-F,)F,

(useful for “asymmetric” and “half-destructive”
detectors, as for phase qubits)
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Niels Bohr:
“If you are not confused by
guantum physics then you
haven't really understood it”

Richard Feynman:
“I think | can safely say that nobody
understands quantum mechanics”

Quantum measurement is the most confusing
and also fascinating part of QM

Two main puzzles:

e Non-locality of collapse

Now well-studied (understood?), in many QM textbooks,
being used (quant. cryptography, CHSH as calibration, etc. )

e \What is “inside” collapse

We know basic answer (many equivalent approaches),
still to be included into QM textbooks,
may lead to important practical applications (g. feedback, etc.) ,

Alexander Korotkov Universitv of California. Riverside
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Conclusions (to 3 lectures)

e It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

e Rabi oscillations are persistent if weakly measured

e Quantum feedback can synchronize persistent Rabi oscillations

e Collapse can sometimes be undone if we manage
to erase extracted information

e Continuous/partial measurements, quantum feedback,
and uncollapsing may have useful applications

e Three direct solid-state experiments have been realized,
many interesting experimental proposals are still waiting
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Thank you!
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