Kending, Taiwan, 01/16/11

Non-projective quantum measurement of solid-state qubits: Bayesian formalism (what is "inside" collapse)

Alexander Korotkov

University of California, Riverside

Outline:

- Very long introduction (incl. EPR, solid-state qubits)
 - Basic Bayesian formalism for quantum measurement and its derivations
 - Non-ideal detectors
 - Bayesian formalism in circuit QED setup

Acknowledgements

Many useful discussions and collaborations

Alexander Korotkov ———

Quantum mechanics is weird...

Niels Bohr:

"If you are not confused by quantum physics then you haven't really understood it"

Richard Feynman:

"I think I can safely say that nobody understands quantum mechanics"

Weirdest part is quantum measurement

Alexander Korotkov

Quantum mechanics = Schrödinger equation (evolution) + <u>collapse postulate</u> (measurement)

1) Probability of measurement result $p_r = |\langle \psi | \psi_r \rangle|^2$

2) Wavefunction after measurement = Ψ_r

- State collapse follows from common sense
- Does not follow from Schrödinger equation (contradicts, random vs. deterministic, "philosophy")

Collapse postulate is controversial since 1920s (needs an observer, contradicts causality) Our focus: what is "inside" collapse, but first discuss EPR

Alexander Korotkov — University of California, Riverside

Einstein-Podolsky-Rosen (EPR) paradox Phys. Rev., 1935

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system.

 $\psi(x_1, x_2) = \sum_n \psi_n(x_2) u_n(x_1)$ (nowadays we call it entangled state) $\psi(x_1, x_2) = \int_{-\infty}^{\infty} \exp[(i/\hbar)(x_1 - x_2)p]dp \sim \delta(x_1 - x_2)$

Measurement of particle 1 cannot affect particle 2, cannot affect particle 2, while QM says it affects (contradicts causality)

=> Quantum mechanics is incomplete

Bohr's reply (Phys. Rev., 1935) (seven pages, one formula: $\Delta p \Delta q \sim h$) (except in footnotes) It is shown that a certain "criterion of physical reality" formulated ... by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena.

Very crudely: No need to understand QM, just use the result

— University of California, Riverside Alexander Korotkov

Bell's inequality (John Bell, 1964)

(setup by David Bohm)

Advantage: choice of meas. directions

$$\psi = \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2)$$

Perfect anticorrelation of results for same meas. directions, $\vec{a} = \vec{b}$

Is it possible to explain the QM result assuming local realism and hidden variables (without superluminal collapse)? **No!!!**

Assume: $A(\vec{a},\lambda) = \pm 1$, $B(\vec{b},\lambda) = \pm 1$, (deterministic result with
perfect anticorr. for (\vec{a},\vec{a}) hidden variable λ)Then: $|P(\vec{a},\vec{b}) - P(\vec{a},\vec{c})| \le 1 + P(\vec{b},\vec{c})$
where $P \equiv P(++) + P(--) - P(+-) - P(-+)$ QM: $P(\vec{a},\vec{b}) = -\vec{a} \cdot \vec{b}$ For 0°, 90°, and 45°: $0.71 \le 1 - 0.71$ violation!Experiment (Aspect et al., 1982; photons instead of spins, CHSH):

yes, "spooky action-at-a-distance"

Alexander Korotkov
 University of California, Riverside

5/44

CHSH paper (Clauser, Horne, Shimony, Holt, 1969)

Problem with original Bell ineq.: need <u>perfect</u> anticorrelation for same directions \Rightarrow not practical!

In CHSH perfect anticorrelation not required \Rightarrow practical

|S|
$$\leq 2$$
, where $S = P(a,b) - P(a,b') + P(a',b) + P(a',b')$
(Aspect's version) $P \equiv p(++) + p(--) - p(+-) - p(-+)$

Maximum violation by QM: $S = \pm 2\sqrt{2}$ $P(a,b) = -\cos(a,b)$ $a' b' S = 2\sqrt{2}$ $b S = 2\sqrt{2}$ $a=0^{\circ}, a'=270^{\circ}, a=0^{\circ}, a'=90^{\circ}, b=45^{\circ}, b'=135^{\circ}$

Alexander Korotkov

Easy derivation:

а	a'	b	b'	S
+	+	+	+	2
+	+	+	I	2
+	+	-	+	-2
+	+	-	I	-2

Probab. by averaging
 University of California, Riverside ——

What about causality?

Actually, not too bad: you cannot transmit your own information choosing a particular measurement direction a

Collapse is still instantaneous: OK, just our recipe, not an "objective reality", not a "physical" process

Consequence of causality: No-cloning theorem

Wootters-Zurek, 1982; Dieks, 1982; Yurke

Result of the other

You cannot copy an unknown quantum state

Proof: Otherwise get information on direction a (and causality violated)

Application: quantum cryptography

Information is an important concept in quantum mechanics

Quantum measurement in solid-state systems

No violation of locality - too small distances

However, interesting issue of continuous measurement (weak coupling, noise \Rightarrow gradual collapse)

Same origin of paradoxes as in EPR (Schr. Eq. not enough)

What happens to a solid-state qubit (two-level system) during its continuous measurement by a detector?

Alexander Korotkov

Starting point:

Alexander Korotkov

Charge qubits with SET readout

Cooper-pair box measured by singleelectron transistor (rf-SET)

Setup can be used for continuous measurements

Alexander Korotkov

Duty, Gunnarsson, Bladh, Delsing, PRB 2004

Guillaume et al. (Echternach's group), PRB 2004

University of California, Riverside

All results are averaged over many measurements (not "single-shot")

At [ns]

10/44

Some other superconducting qubits

Flux qubit

Mooij et al. (Delft)

Phase qubit

J. Martinis et al. (UCSB and NIST)

Charge qubit with circuit QED

R. Schoelkopf et al. (Yale)

Alexander Korotkov

Some other superconducting qubits

Flux qubit

J. Clarke et al. (Berkeley)

"Quantronium" qubit

I. Siddiqi, R. Schoelkopf, M. Devoret, et al. (Yale)

Semiconductor (double-dot) qubit

T. Hayashi et al. (NTT), PRL 2003

Detector is not separated from qubit, also possible to use a separate detector

Some other semiconductor qubits

Spin qubit (QPC meas.)

C. Marcus et al. (Harvard)

Spin qubit

L. Kouwenhoven et al. (Delft)

ICPS (mA)

Double-dot qubit

Gorman, Hasko, Williams (Cambridge)

"Which-path detector" experiment

What is the evolution due to measurement? (What is "inside" collapse?)

• controversial for last 80 years, many wrong answers, many correct answers

• solid-state systems are more natural to answer this question

Various approaches to non-projective (weak, continuous, partial, generalized, etc.) quantum measurements

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Plenio, Walls, Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc. (very incomplete list)

Key words: POVM, restricted path integral, <u>quantum trajectories</u>, quantum filtering, quantum jumps, stochastic master equation, etc.

"Typical" setup: double-quantum-dot (DQD) qubit + quantum point contact (QPC) detector Gurvitz, 1997

 $H = H_{QB} + H_{DET} + H_{INT}$ $H_{QB} = \frac{\varepsilon}{2}\sigma_z + H\sigma_x$ $I(t) = I_0 + \frac{\Delta I}{2}z(t) + \xi(t)$ const + signal + noise

Two levels of average detector current: I_1 for qubit state $|1\rangle$, I_2 for $|2\rangle$ Response: $\Delta I = I_1 - I_2$ Detector noise: white, spectral density S_I

For low-transparency QPC

$$\begin{split} H_{DET} &= \sum_{l} E_{l} a_{l}^{\dagger} a_{l} + \sum_{r} E_{r} a_{r}^{\dagger} a_{r} + \sum_{l,r} T(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r}) \\ H_{INT} &= \sum_{l,r} \Delta T \left(c_{1}^{\dagger} c_{1} - c_{2}^{\dagger} c_{2} \right) \left(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r} \right) \\ S_{I} &= 2eI \end{split}$$

Alexander Korotkov — University of California, Riverside

What happens to a qubit state during measurement?

Start with density matrix evolution due to measurement only $(H=\varepsilon=0)$

"Orthodox" answer

"Decoherence" answer

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\exp(-\Gamma t)}{2} \\ \frac{\exp(-\Gamma t)}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

|1> or |2>, depending on the result

 $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{\checkmark} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

no measurement result! (ensemble averaged)

Decoherence has nothing to do with collapse!

applicable for:	single quant. system	continuous meas.
Orthodox	yes	no
Decoherence (ensemble)	no	yes
Bayesian, POVM, quant. traject., etc.	yes	yes

Bayesian (POVM, quant. traj., etc.) formalism describes gradual collapse of a single quantum system, **taking into account measurement result**

- Alexander Korotkov — University of California, Riverside

Bayesian formalism for DQD-QPC system

 $H_{QB} = 0$ $|1\rangle \circ$ $H_{QB} \bullet e$ $|2\rangle \circ e$ \bigcup I(t)

Qubit evolution due to measurement (quantum back-action): $\psi(t) = \alpha(t) |1\rangle + \beta(t) |2\rangle$ or $\rho_{ij}(t)$

1) $|\alpha(t)|^2$ and $|\beta(t)|^2$ evolve as probabilities, i.e. according to the **Bayes rule** (same for ρ_{ii})

2) phases of $\alpha(t)$ and $\beta(t)$ do not change (no dephasing!), $\rho_{ij}/(\rho_{ii}\rho_{jj})^{1/2} = \text{const}$

(A.K., 1998)

Bayes rule (1763, Laplace-1812):

posterior probability $P(A_i | \text{res}) = \frac{P(A_i)}{\sum_k P(A_k) P(\text{res} | A_k)}$

$$\frac{1}{\tau} \int_0^{\tau} I(t) dt$$

$$I_1$$
measured
$$I_2$$

So simple because:

no entaglement at large QPC voltage
 QPC happens to be an ideal detector
 no Hamiltonian evolution of the qubit

"Quantum Bayes theorem" (ideal detector assumed)

Bayesian formalism for a single qubit

- Time derivative of the quantum Bayes rule
- Add unitary evolution of the qubit
- Add decoherence γ (if any)

$$\dot{\rho}_{11} = -\dot{\rho}_{22} = -2\frac{H}{\hbar} \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22}\frac{2\Delta I}{S_I} [\underline{I(t)} - I_0]$$

$$\dot{\rho}_{12} = i\varepsilon\rho_{12} + i\frac{H}{\hbar}(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})\frac{\Delta I}{S_I} [\underline{I(t)} - I_0] - \gamma\rho_{12}$$

$$\Delta I = I_1 - I_2, \quad I_0 = (I_1 + I_2)/2, \quad S_I - \text{detector noise} \qquad (A.K., 1998)$$

$$\gamma = 0 \quad \text{for QPC} \qquad \text{For simulations:} \quad I = I_0 + \frac{\Delta I}{2}(\rho_{11} - \rho_{22}) + \xi \text{ noise } S_{\xi} = S_I$$

Evolution of qubit *wavefunction* can be monitored if $\gamma=0$ (quantum-limited)

Natural generalizations: • add classical back-action

• entangled qubits

Alexander Korotkov

Relation to "conventional" master equation

$$\dot{\rho}_{11} = -\dot{\rho}_{22} = -2H \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22} \frac{2\Delta I}{S_I} [I(t) - I_0]$$

$$\dot{\rho}_{12} = i \varepsilon \rho_{12} + i H (\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] - \gamma \rho_{12}$$

 ΔI – detector response, S_I – detector noise

I(t)

$$\hbar = 1$$

Averaging over result I(t) leads to conventional master equation:

$$\dot{\rho}_{11} = -\dot{\rho}_{22} / dt = -2 H \operatorname{Im} \rho_{12}$$

$$\dot{\rho}_{12} = i \varepsilon \rho_{12} + i H (\rho_{11} - \rho_{22}) - \Gamma \rho_{12}$$

 Γ – ensemble decoherence, $\Gamma = \gamma + (\Delta I)^2 / 4S_I$

Ensemble averaging includes averaging over measurement result Quantum efficiency: $\eta = \frac{(\Delta I)^2 / 4S_I}{\Gamma} = \frac{\text{quantum}}{\text{total}} = 1 - \frac{\text{decoherence}}{\text{total}}$

Assumptions needed for the Bayesian formalism:

- Detector voltage is much larger than the qubit energies involved eV >> ħΩ, eV >> ħΓ, ħ/eV << (1/Ω, 1/Γ), Ω=(4H²+ε²)^{1/2}
 (no coherence in the detector, classical output, Markovian approximation)
- Simpler if weak response, $|\Delta I| << I_0$, (coupling $C \sim \Gamma/\Omega$ is arbitrary)

Derivations:

- 1) "logical": via correspondence principle and comparison with decoherence approach (A.K., 1998)
- 2) "microscopic": Schr. eq. + collapse of the detector (A.K., 2000)

- 3) from "quantum trajectory" formalism developed for quantum optics (Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)
- 4) from POVM formalism (Jordan-A.K., 2006)

"Informational" derivation of the Bayesian formalism

(A.K., 1998)

Step 1. Assume $H = \varepsilon = 0$ ("frozen" qubit). Since ρ_{12} is not involved, evolution of ρ_{11} and ρ_{22} should be the same as in the classical case, i.e. Bayes formula (correspondence principle).

Step 2. Assume $H = \varepsilon = 0$ and pure initial state: $\rho_{12}(0) = [\rho_{11}(0) \rho_{22}(0)]^{1/2}$. For any realization $|\rho_{12}(t)| \leq [\rho_{11}(t) \rho_{22}(t)]^{1/2}$. Then averaging over realizations gives $|\rho_{12}^{av}(t)| \leq \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I)t]$. Compare with conventional (ensemble) result (Gurvitz-1997, Aleiner et al.-97) for QPC: $\rho_{12}^{av}(t) = \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I)t]$. Exactly the upper bound! Therefore, pure state remains pure: $\rho_{12}(t) = [\rho_{11}(t) \rho_{22}(t)]^{1/2}$.

Step 3. Account of a mixed initial state Result: the degree of purity $\rho_{12}(t) / [\rho_{11}(t) \rho_{22}(t)]^{1/2}$ is conserved.

Step 4. Add qubit evolution due to H and ε .

Step 5. Add extra dephasing due to detector nonideality (i.e., for SET).

Alexander Korotkov — University of California, Riverside

25/44

Derivation via POVM

(Jordan, A.K., 2006)

Quantum measurement in POVM formalism (Nielsen-Chuang, p. 85,100):

Where POVM measurement comes from

Initial state
$$|\psi_{in}\rangle = \sum_{k} c_{k} |k\rangle$$

Interaction with ancilla

$$|k\rangle |0\rangle \rightarrow \sum_{l,a} U_{k,la} |l\rangle |a\rangle$$

(U comes from unitary transformation in combined Hilbert space system+ancilla)

Norm

$$|\psi_{in}\rangle|0\rangle \rightarrow \sum_{k,l,a} c_k U_{k,la}|l\rangle|a\rangle = \sum_l |l\rangle \left(\sum_{k,a} c_k U_{k,la}|a\rangle\right)$$

Project ancilla onto $|r\rangle = \sum r_a |a\rangle$

$$\psi_{in} \rangle | 0 \rangle \rightarrow \frac{1}{\text{Norm}} \sum_{l} | l \rangle \left(\sum_{k,a}^{a} c_{k}^{a} U_{k,la} \langle r | a \rangle \right) | r \rangle = \frac{1}{\text{Norm}} \sum_{l} | l \rangle \sum_{k} c_{k} \left(\sum_{a} r_{a}^{*} U_{k,la} \right) | r \rangle$$
So, as a result:

So, as a result:

ancilla
$$|0\rangle \rightarrow |r\rangle$$

system $\sum_{k} c_{k} |k\rangle \rightarrow \frac{\sum_{k,l} M_{r,lk} c_{k} |l\rangle}{\text{Norm}}$ i.e. $|\psi_{in}\rangle \rightarrow \frac{M_{r} |\psi_{in}\rangle}{\text{Norm}}$

University of California, Riverside **Alexander Korotkov**

Quantum trajectory formalism for the same system

Goan, Milburn, Wiseman, Sun, 2000 Goan, Milburn, 2001

Ito form

 ρ

$$\begin{split} c(t) &= -\frac{i}{\hbar} [\mathcal{H}_{CQD}, \rho_{c}(t)] + \mathcal{D}[T + \mathcal{X}n_{1}]\rho_{c}(t) & \mathcal{D}[B]\rho = \mathcal{J}[B]\rho - \mathcal{A}[B]\rho, \\ &+ \xi(t) \frac{\sqrt{\xi}}{|T|} [T^{*}\mathcal{X}n_{1}\rho_{c}(t) + \mathcal{X}^{*}T\rho_{c}(t)n_{1} & \mathcal{A}[B]\rho = B\rho B^{\dagger}, \\ &+ \xi(t) \frac{\sqrt{\xi}}{|T|} [T^{*}\mathcal{X}n_{1}\rho_{c}(t) + \mathcal{X}^{*}T\rho_{c}(t)n_{1} & \mathcal{A}[B]\rho = (B^{\dagger}B\rho + \rho B^{\dagger}B)/2. \\ &- 2\operatorname{Re}(T^{*}\mathcal{X})\langle n_{1}\rangle_{c}(t)\rho_{c}(t)]. & [T_{\pm}|^{2} = D_{\pm} = 2\pi e |T_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{00} + \chi_{00}|^{2}g_{L}g_{R}V_{\pm}/\hbar, \\ &|T_{\pm} + \mathcal{X}_{\pm}|^{2} = D_{\pm}' = 2\pi e |T_{0} + \chi_{0} + \chi_{0}' = 2\pi e |T_{0} + \chi_{0} + \chi_{0} + \chi_{0}' = 2\pi e |T_{0} + \chi_{0} +$$

Looks different, but equivalent to Bayesian formalism

Alexander Korotkov — University of California, Riverside

Stratonovich and Ito forms for nonlinear stochastic differential equations

Definitions of the derivative:

$$\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t/2) - f(t - \Delta t/2)}{\Delta t}$$
(Stratonovich)
$$\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$
(Ito)

Why matters? Usually $(f + df)^2 \approx f^2 + 2f df$, $(df)^2 \ll df$ But if $df = \xi dt$ (white noise ξ), then $(df)^2 = \xi^2 dt^2 \approx \frac{S_{\xi}}{2} dt$ Simple translation rule:

$$\frac{d}{dt}x_{i}(t) = G_{i}(\vec{x},t) + F_{i}(\vec{x},t)\xi(t) \qquad \text{(Stratonovich)}$$

$$\frac{d}{dt}x_{i}(t) = G_{i}(\vec{x},t) + F_{i}(\vec{x},t)\xi(t) + \frac{S_{\xi}}{4}\sum_{k}\frac{\partial F_{i}(\vec{x},t)}{dx_{k}}F_{k}(\vec{x},t) \qquad \text{(Ito)}$$

Advantage of Stratonovich: usual calculus rules (intuition) Advantage of Ito: simple averaging

— Alexander Korotkov — University of California, Riverside

Methods for calculations

Monte Carlo

- "Ideologically" simplest
- In many cases most efficient
- Idea: use finite time step Δt
 - find probability distribution for $\overline{I}(\Delta t)$
 - pick a random number for $\overline{I}(\Delta t)$
 - do quantum Bayesian update

Analytics (or non-random numerics)

- Be very careful about Ito-Stratonovich issue
- Use Stratonovich form for derivations (derivatives, etc.)
- Convert into Ito for averaging over noise
- Very good idea to compare with Monte Carlo and/or check second order terms in *dt*

30/44

Fundamental limit for ensemble decoherence

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

 $(\varepsilon_O \varepsilon_{BA} - \varepsilon_{O,BA}^2)^{1/2} \ge \hbar/2 \quad \Leftrightarrow \quad \Gamma \ge (\Delta I)^2/4S_I + K^2S_I/4$

Alexander Korotkov University of California, Riverside

Two ways to think about a non-ideal detector ($\eta < 1$)

These ways are equivalent (same results for any expt.) ⇒ matter of convenience

Alexander Korotkov

Nonideal detectors with input-output noise correlation

$$\frac{d}{dt}\rho_{11} = -\frac{d}{dt}\rho_{22} = -2H\operatorname{Im}\rho_{12} + \rho_{11}\rho_{22}\frac{2\Delta I}{S_I}[I(t) - I_0]$$

$$\frac{d}{dt}\rho_{12} = i\varepsilon\rho_{12} + iH(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})\frac{\Delta I}{S_I}[I(t) - I_0] + \underline{iK[I(t) - I_0]\rho_{12}} - \tilde{\gamma}\rho_{12}$$

quantum efficiency :

$$\tilde{\eta} = 1 - \frac{\tilde{\gamma}}{\Gamma} = \frac{(\Delta I)^2 / 4S_I + K^2 S_I / 4}{\Gamma}$$
 or $\eta = \frac{(\Delta I)^2 / 4S_I}{\Gamma}$

Alexander Korotkov — University of California, Riverside

A simple general form for a broadband linear detector (QPC, SET, etc.)

$$H_{qb} = 0$$
quantum backaction (non-unitary,

$$\begin{cases} \frac{\rho_{11}(\tau)}{\rho_{22}(\tau)} = \frac{\rho_{11}(0)}{\rho_{22}(0)} \frac{\exp[-(\bar{I} - I_1)^2/2D]}{\exp[-(\bar{I} - I_2)^2/2D]} & \text{no self-evolution} \\ \text{no self-evolution} \\ \text{of qubit assumed} \\ \\ \rho_{12}(\tau) = \rho_{12}(0) \sqrt{\frac{\rho_{11}(\tau) \rho_{22}(\tau)}{\rho_{11}(0) \rho_{22}(0)}} \exp(iK\bar{I}\tau) \exp(-\gamma\tau) \\ & \text{decoherence} \end{cases}$$

classical backaction (unitary)

noise S_I $\overline{I} \equiv \frac{1}{\tau} \int_0^{\tau} I(t) dt$ $D = S_I / 2\tau$

 $\Delta I = I_1 - I_2$

I(t)

|2**⟩** ∘

Example of classical ("physical") backaction: Each electron passed through QPC rotates qubit (sensitivity of tunneling phase for an asymmetric barrier) $arg(T^*\Delta T) \neq 0$ $H_{DET} = \sum_{l} E_{l}a_{l}^{\dagger}a_{l} + \sum_{r} E_{r}a_{r}^{\dagger}a_{r} + \sum_{l,r} T(a_{r}^{\dagger}a_{l} + a_{l}^{\dagger}a_{r})$ $H_{INT} = \sum_{l,r} \Delta T (c_{1}^{\dagger}c_{1} - c_{2}^{\dagger}c_{2})(a_{r}^{\dagger}a_{l} + a_{l}^{\dagger}a_{r})$

Alexander Korotkov — University of California, Riverside -

A simple general form for a broadband linear detector (QPC, SET, etc.)

$$H_{qb} = 0$$

$$H_{$$

Narrowband linear measurement

Paramp traditionally discussed in terms of noise temperature

 $\theta \ge 0$ for phase-sensitive (degenerate, homodyne) paramp $\theta \ge \frac{\hbar \omega}{2}$ for phase-preserving (non-degenerate, heterodyne) paramp Haus, Mullen, 1962 Ackn.: Likharev, Giffard, 1976 Devoret

We will discuss it in terms of qubit evolution due to measurement

Alexander Korotkov

Phase-sensitive (degenerate) paramp

pumps $\omega_a + \omega_b = 2\omega_d$ quadrature $\cos(\omega_d t + \varphi)$ is amplified, quadrature $\sin(\omega_d t + \varphi)$ is suppressed

Assume *I*(*t*) measures $\cos(\omega_d t + \varphi)$, then *Q*(*t*) not needed get some information ($\sim \cos^2 \varphi$) about qubit state and some information ($\sim \sin^2 \varphi$) about photon fluctuations

$$\begin{cases} \frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \frac{\exp[-(\overline{I} - I_g)^2/2D]}{\exp[-(\overline{I} - I_e)^2/2D]} & \overline{I} = \frac{1}{\tau} \int_0^{\tau} I(t) \, dt & D = S_I/2\tau \\ I_g - I_e = \Delta I \cos\varphi & K = \frac{\Delta I}{S_I} \sin\varphi \\ \rho_{ge}(\tau) = \rho_{ge}(0) \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iK\overline{I}\tau) & \Gamma = \frac{(\Delta I \cos\varphi)^2}{4S_I} + K^2 \frac{S_I}{4} = \frac{\Delta I^2}{4S_I} = \frac{8\chi^2 \overline{n}}{\kappa} \\ \text{(rotating frame)} & \text{Same as for QPC/SET, but trade-off } (\phi) \\ \text{between quantum \& classical back-actions} \\ \text{Minimize of California, Riverside} & \text{Constant of California, Riverside} \\ \end{cases}$$

Why not just use Schrödinger equation for the whole system?

Impossible in principle!

Technical reason: Outgoing information (measurement result) makes it an open system

Philosophical reason: Random measurement result, but deterministic Schrödinger equation

Einstein: God does not play dice

Heisenberg: unavoidable quantum-classical boundary

Alexander Korotkov
 University of California, Riverside

40/44

Measurement vs. decoherence

Widely accepted point of view:

measurement = decoherence (environment) ls it true?

- Yes, if not interested in information from detector (ensemble-averaged evolution)
- No, if take into account measurement result (single quantum system)

Measurement result obviously gives us more information about the measured system, so we know its quantum state better (ideally, a pure state instead of a mixed state)

Can we verify the Bayesian formalism experimentally?

Direct way:

A.K.,1998

However, difficult: bandwidth, control, efficiency (expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments

Alexander Korotkov

Experimental predictions and proposals from Bayesian formalism

- Direct experimental verification (1998)
- Measured spectrum of Rabi oscillations (1999, 2000, 2002)
- Bell-type correlation experiment (2000)
- Quantum feedback control of a qubit (2001, 2004, 2009)
- Entanglement by measurement (2002)
- Measurement by a quadratic detector (2003)
- Squeezing of a nanomechanical resonator (2004)
- Violation of Leggett-Garg inequality (2005)
- Partial collapse of a phase qubit (2005)
- Undoing of a weak measurement (2006, 2008)
- Decoherence suppression by uncollapsing (2010)
- Persistent Rabi revealed in noise (2010)

3 solid-state experiments realized so far

Alexander Korotkov

Conclusions

- Quantum measurement is the most controversial and fascinating part of quantum mechanics
- It is easy to see what is "inside" collapse: simple Bayesian formalism works for many solid-state setups
- Classical information plays a very important part in quantum measurement
- Measurement backaction necessarily has a "spooky" part ("unphysical", informational, without a mechanism); it may also have a "classical" part (with a physically understandable mechanism)

- Alexander Korotkov

44/44