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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”

Quantum mechanics is weird…

Weirdest part is quantum measurement
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Quantum mechanics =
Schrödinger equation (evolution)

+
collapse postulate (measurement)

1)  Probability of measurement result   pr =

2)  Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

• State collapse follows from common sense
• Does not follow from Schrödinger equation 

(contradicts, random vs. deterministic, “philosophy”)

Our focus: what is “inside” collapse, but first discuss EPR

Collapse postulate is controversial since 1920s
(needs an observer, contradicts causality)
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Einstein-Podolsky-Rosen (EPR) paradox
Phys. Rev., 1935

In a complete theory there is an element corresponding to each element of 
reality. A sufficient condition for the reality of a physical quantity is the 
possibility of predicting it with certainty, without disturbing the system.

1 2 2 1( , ) ( ) ( )n nnx x x u xψ ψ= ∑
1 2 1 2 1 2( , ) exp[( / )( ) ] ~ ( )x x i x x p dp x xψ δ

∞

−∞
= − −∫ =

Bohr’s reply (Phys. Rev., 1935)

It is shown that a certain “criterion of physical reality” formulated …
by A. Einstein, B. Podolsky and N. Rosen contains an essential 
ambiguity when it is applied to quantum phenomena.

(seven pages, one formula: Δp Δq ~ h)
(except in footnotes)

=>  Quantum mechanics is incomplete

1x 2x Measurement of particle 1 
cannot affect particle 2,
while QM says it affects
(contradicts causality)

(nowadays we call it entangled state)

Very crudely: No need to understand QM, just use the result
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Bell’s inequality (John Bell, 1964)

a b
1 2 1 2

1 ( )
2

ψ = ↑ ↓ − ↓ ↑

Perfect anticorrelation of results 
for same meas. directions, a b(setup by David Bohm)

Is it possible to explain the QM result assuming local realism 
and hidden variables (without superluminal collapse)?  No!!!

Assume:

=
GG

( , ) 1, ( , ) 1,A a B bλ λ= ± = ±
GG

| ( , ) ( , ) | 1 ( , )

(deterministic result with
hidden variable λ)

Then: P a b P a c P b c− ≤ +
G GG G G G

( ) ( ) ( ) ( )P P P P P≡ + + + −− − + − − −+

( , )
where

QM: For 0°, 90°, and 45°:P a b a b= −
G GG Gi 0.71 1 0.71≤ − violation!

Experiment (Aspect et al., 1982; photons instead of spins, CHSH):
yes, “spooky action-at-a-distance”
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Advantage: choice of  meas. directions

perfect anticorr. for ( , )a aG G
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CHSH paper (Clauser, Horne, Shimony, Holt, 1969)

In CHSH perfect anticorrelation
not required ⇒ practical

| | 2, where ( , ) ( , ') ( ', ) ( ', ')S S P a b P a b P a b P a b≤ = - + +

a or a’ b or b’

( ) ( ) ( ) ( )P p p pp≡ ++ + - - - +- - -+

Maximum violation by QM: 2 2S ±=

(Aspect’s version)

a=0°, a’=90°, 
b=45°, b’=135°

P(a,b) =-cos(a,b)
a

a=0°, a’=270°, 
b=135°, b’=45°

b

a’
b’

a b’
a’

b

2 2S = 2 2S = -

4 experiments instead of 3

Problem with original Bell ineq.: 
need perfect anticorrelation for
same directions  ⇒ not practical!

Easy derivation:

a a’ b b’ S
+ + + + 2

2
-2
-2
..

+ + + -
+ + - +
+ + - -
.. .. .. ..

Probab. by averaging
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What about causality?
Actually, not too bad: you cannot transmit your own information 

choosing a particular measurement direction a
Result of the other  
measurement does not
depend on direction a

a

or
Randomness saves causality

Collapse is still instantaneous: OK, just our recipe, 
not an “objective reality”, not a “physical” process

Consequence of causality: No-cloning theorem

You cannot copy an unknown quantum state
Proof: Otherwise get information on direction a (and causality violated)

Wootters-Zurek, 1982; Dieks, 1982; Yurke

Application: quantum cryptography
Information is an important concept in quantum mechanics
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Quantum measurement 
in solid-state systems

No violation of locality – too small distances

However, interesting issue of continuous measurement 
(weak coupling, noise ⇒ gradual collapse)

Starting point: qubit

detector
I(t), noise S

What happens to a solid-state qubit (two-level system)
during its continuous measurement by a detector?

Same origin of paradoxes as in EPR (Schr. Eq. not enough)
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Superconducting “charge” qubit

Vion et al. (Devoret’s group); Science, 2002
Q-factor of Ramsey oscillations = 25,000

Single Cooper
pair box

Quantum coherent 
(Rabi) oscillations

2e

Vg

n+1

EJ

2
2(2 )ˆ ( )

2
(| 1 | | 1 |)

2

ˆ
J

g
eH n
CE n n n n

n
〉 〈 + + + 〉 〈

= -

-

Y. Nakamura, Yu. Pashkin, 
and J.S. Tsai (Nature, 1998)

2 gn

Δt (ps)

“island”

Josephson
junction

n

n: number of
Cooper pairs
on the island
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Charge qubits with SET readout
Duty, Gunnarsson, Bladh,

Delsing, PRB 2004
Guillaume et al. (Echternach’s 

group), PRB 2004

2e

Vg V I(t)

Cooper-pair box
measured by single-
electron transistor 
(rf-SET)

All results are averaged over many measurements (not “single-shot”) 

Setup can be used 
for continuous 
measurements
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Some other superconducting qubits
Flux qubit

Mooij et al. (Delft)

Phase qubit
J. Martinis et al. 

(UCSB and NIST)

Charge qubit 
with circuit QED 

R. Schoelkopf et al. (Yale)
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I. Siddiqi, R. Schoelkopf, 
M. Devoret, et al. (Yale)

J. Clarke et al. (Berkeley)

Some other superconducting qubits
“Quantronium” qubitFlux qubit
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Semiconductor (double-dot) qubit
T. Hayashi et al. (NTT), PRL 2003

Detector is not separated from qubit, 
also possible to use a separate detector

Rabi oscillations
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Some other semiconductor qubits
Double-dot qubit

Gorman, Hasko, Williams 
(Cambridge)

Spin qubit (QPC meas.)

C. Marcus et al. (Harvard)

Spin qubit
L. Kouwenhoven et al.

(Delft)
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“Which-path detector” experiment

Theory: Aleiner, Wingreen,
and Meir, PRL 1997

2 2( )
(1 )

( )
4 I

eV T
h T T

I
S

Δ
Γ = =

Δ
−

Dephasing rate:

ΔI – detector response,  SI – shot noise

The larger noise, the smaller dephasing!!!

(ΔI)2/4SI ~ rate of “information flow”

Buks, Schuster, Heiblum, Mahalu, 
and Umansky,  Nature 1998

A
-B

lo
op

I(t)
V

QPC
detector
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Various approaches to non-projective (weak, continuous, 
partial, generalized, etc.) quantum measurements

Key words: POVM, restricted path integral, quantum trajectories, quantum
filtering, quantum jumps, stochastic master equation, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Plenio, Walls,
Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc.
(very incomplete list)

solid-state qubit

detector
I(t), noise S

Our limited scope:
(simplest system, 
experimental setups)

What is the evolution due to measurement?
(What is “inside” collapse?)

• controversial for last 80 years, many wrong answers, many correct answers
• solid-state systems are more natural to answer this question
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“Typical” setup: double-quantum-dot (DQD) 
qubit + quantum point contact (QPC) detector

eH

I(t)

H = HQB + HDET + HINT

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉

Response: ΔI= I1–I2 Detector noise: white, spectral density SI

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑ 2IS eI=

|1Ò

|2Ò

|1Ò
|2Ò

I(t)

|2Ò
|1Ò

Gurvitz, 1997

2 Z XQBH Hε σ σ= +

For low-transparency QPC

0( ) ( ) ( )
2
II t I z t tξΔ

= + +
const +  signal  + noise
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1 01 1
0 02 2

1 1 0 0
2 2 0 1

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

/
2

What happens to a qubit state during measurement?
Start with density matrix evolution due to measurement only (H=ε=0 )

“Orthodox” answer

1 1 1 exp( ) 1 0
2 2 2 2 2
1 1 exp( ) 1 10
2 2 2 2 2

t

t

−Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

→ →

“Decoherence” answer 

|1> or |2>, depending on the result no measurement result!  (ensemble averaged)

Decoherence has nothing to do with collapse!

applicable for:  single quant. system continuous meas.
Orthodox yes no

Decoherence (ensemble) no yes
Bayesian, POVM, quant. traject., etc. yes yes

Bayesian (POVM, quant. traj., etc.) formalism describes gradual collapse 
of a single quantum system, taking into account measurement result
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Bayesian formalism for DQD-QPC system

(A.K., 1998)

eH

I(t)

Qubit evolution due to measurement (quantum back-action):

So simple because: 
1) no entaglement at large QPC voltage
2) QPC happens to be an ideal detector
3) no Hamiltonian evolution of the qubit

( ) (res | )
( | res)

( ) (res | )k kk

i i
i

P A P A
P A

P A P A
=
∑

Bayes rule (1763, Laplace-1812):

HQB = 0
|1Ò

|2Ò
1)  |α(t)|2 and |β(t)|2 evolve as probabilities,

i.e. according to the Bayes rule (same for ρii)
2)  phases of α(t) and β(t) do not change

(no dephasing!), ρij /(ρii ρjj)1/2 = const

( ) ( ) | 1 ( ) | 2t t tψ α β= 〉 + 〉 or ( )ij tρ

likelihoodposterior
probability

prior
probab. I1 I2

measured0
1 ( )I t dt

τ

τ ∫
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“Quantum Bayes theorem“ (ideal detector assumed)

e
H

I(t)

|1>            |2>            

2

2

11 1 22 2

1 2

0
1 ( )

( , ) (0) ( , ) (0) ( , )
1( , ) exp[ ( ) / 2 ],

2
/ 2 , | | , /II i i

i i

I I t dt

P I P I P I

P I I I D
D

D S I I I S I

τ
τ
τ ρ τ ρ τ

τ
π

τ τ

≡

= +

= − −

= −

∫

� �

11 12

21 22

(0) (0)
(0) (0)

ρ ρ
ρ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

H = ε = 0
(“frozen” qubit)

Initial state:

( ) ( | )
( | )

( ) ( | )k kk

i i
i

P B P A B
P B A

P B P A B
=
∑

After the measurement during time τ, the probabilities 
should be updated using the standard Bayes formula:

2
11 1

11 2 2
11 1 22 2

12 12
22 111/2 1/2

11 22 11 22

(0) exp[ ( ) / 2 ]( )
(0) exp[ ( ) / 2 ] (0) exp[ ( ) / 2 ]

( ) (0) , ( ) 1 ( )
[ ( ) ( )] [ (0) (0)]

I I D
I I D I I D
ρ

ρ τ
ρ ρ

ρ τ ρ
ρ τ ρ τ

ρ τ ρ τ ρ ρ

+
- -

=
- - - -

= = -

Quantum Bayes
formulas:

Measurement (during time τ):

I
_

P

I1 I2

Iactual
_

2D1/2 2D1/2
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Bayesian formalism for a single qubit

(A.K., 1998)

Evolution of qubit wavefunction can be monitored if γ=0 (quantum-limited)

eH

I(t) 2e

Vg V

I(t)
• Time derivative of the quantum Bayes rule
• Add unitary evolution of the qubit
• Add decoherence γ (if any)

11 22 12 11 22 0

12 12 11 22 12 11 22 0 12

22 Im [ ]

( ) ( ) [ ]

( )

( )

I

I

H I I
S

H Ii i I
S

I t

I t

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ γ ρ

• •

•

Δ

Δ
+

=

=

= - = - + -

= + - - - -

0γ = for QPC

Natural generalizations:  • add classical back-action
• entangled qubits

ΔI=I1-I2 , I0=(I1+I2)/2,   SI – detector noise

For simulations: 0 11 22( )
2
II I ρ ρ ξΔ

= + − +
noise IS Sξ =
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Relation to “conventional”
master equation

ΔI – detector response,  SI – detector noise
Averaging over result I(t) leads to conventional master equation:

11 22 12 11 22 0

12 12 11 22 12 11 22 0 12

22 Im [ ]

( ) ( ) [ ]

( )

( )
I

I

IH I
S

Ii i H I
S

I t

I t

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ γ ρ

• •

•

Δ

Δ
+

= - = - + -

= + - - - -

2( ) / 4 II SγΓ − Γ + Δ=ensemble decoherence,   

eH

I(t) 2e

Vg V

I(t)

11 22 12

12 12 11 22 12

2 Im

( )

dt H

i i H

ρ ρ ρ

ρ ε ρ ρ ρ ρ

• •

•
Γ

= - / = -

= + - -

Ensemble averaging includes averaging over measurement result

1==

Quantum efficiency:
2( ) / 4 quantum decoherence1

total total
II Sη Δ

= = = −
Γ
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Assumptions needed for the Bayesian formalism:
• Detector voltage is much larger than the qubit energies involved 

eV >> ÑΩ, eV >> ÑΓ, Ñ/eV << (1/Ω, 1/Γ),  Ω=(4H2+ε2)1/2

(no coherence in the detector, classical output, Markovian approximation)

• Simpler if weak response, |ΔI | << I0,  (coupling C ~Γ/Ω is arbitrary)           

Derivations:  
1) “logical”: via correspondence principle and comparison with 

decoherence approach (A.K., 1998) 
2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000) 

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.) 

4) from POVM formalism (Jordan-A.K., 2006) 
5) from Keldysh formalism (Wei-Nazarov, 2007)

quantum
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“Informational” derivation 
of the Bayesian formalism

Step 1. Assume H = ε = 0 (“frozen” qubit). 
Since ρ12 is not involved, evolution of ρ11 and ρ22 should be the same       
as in the classical case, i.e. Bayes formula (correspondence principle).

Step 2. Assume H = ε = 0 and pure initial state: ρ12 (0) = [ρ11(0) ρ22(0)]1/2
.

For any realization |ρ12 (t)| ≤ [ρ11(t) ρ22(t)]1/2 . Then averaging over 
realizations gives  |ρ12

av(t)| ≤ ρ12
av(0) exp[æ (ΔI 2/4SI) t].

Compare with conventional (ensemble) result (Gurvitz-1997, Aleiner et al.-97) 
for QPC: ρ12

av (t) = ρ12
av (0) exp[æ (ΔI2/4SI) t]. Exactly the upper bound!

Therefore, pure state remains pure: ρ12 (t) = [ρ11(t) ρ22(t)]1/2
.

Step 3. Account of a mixed initial state
Result: the degree of purity ρ12 (t) / [ρ11(t) ρ22(t)]1/2 is conserved. 

Step 4. Add qubit evolution due to H and ε.

Step 5. Add extra dephasing due to detector nonideality (i.e., for SET).

(A.K., 1998)
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11 1
11 11 11 12

12 2
22 22 22 12

11 21 2
12 12 11 22 12 12

2 Im

2 Im

( )
2

n n n n

n n n n

n n n n n n

I Id H
dt e e

I Id H
dt e e

I II Id Hi i
dt e e

ρ ρ ρ ρ

ρ ρ ρ ρ

ερ ρ ρ ρ ρ ρ

−

−

−

= − + −

= − + +

+
= + − − +

=

=

= =

Schrödinger evolution of “qubit + detector”
for a low-T QPC as a detector (Gurvitz, 1997)

Detector collapse at t = tk

11 22( ) ( ) ( )k
n n

kP n t tρ ρ= +
Particular nk is chosen at tk

,

11 22

( 0) = ( 0)

( )
( 0) =

( ) ( )

n
ij k n nk ij k

nk
ij k

ij k nk nk
k k

t t

t
t

t t

ρ δ ρ

ρ
ρ

ρ ρ

+ +

+
+

If = = 0,H ε
this leads to

11 1 22 2
11 22

11 1 22 2 11 1 22 2
1/ 2

11 22
12 12 1/ 2

11 22

(0) ( ) (0) ( )( ) , ( )
(0) ( ) (0) ( ) (0) ( ) (0) ( )

( / )[ ( ) ( )]( ) (0) , ( ) exp( / ),
![ (0) (0)]

n
i

i i

P n P nt t
P n P n P n P n

I t et tt P n I t e
n

ρ ρ
ρ ρ

ρ ρ ρ ρ

ρ ρ
ρ ρ

ρ ρ

= =
+ +

= = −

which are exactly quantum Bayes formulas

“Microscopic” derivation of the Bayesian formalism

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

(A.K., 2000)
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Derivation via POVM

Measurement (Kraus) operator 
Mr (any linear operator in H.S.) :

†

†Tr( )
r r

r r

M M
M M
ρ

ρ
ρ

→

Quantum measurement in POVM formalism  (Nielsen-Chuang, p. 85,100):

† 1r rr M MCompleteness : =∑

†Tr( )r r rP M Mρ=Probability :

|| ||
r

r

M
M

ψ
ψ

ψ
→ or

2|| ||r rP M ψ= or
(People often prefer linear evolution

and non-normalized states)

incident 
electron

transmitted

|1Ò
|2Ò

(t1,2)

For each incident 
electron:

1 1
transrefl

2 2

0 0
,

0 0
M M

t
r t

r
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

For many incident electrons ⇒ Bayesian formalism

reflected 
(r1,2) 

(Jordan, A.K., 2006)

Relation between POVM and 
quantum Bayesian formalism:

decomposition †
r r r rM U M M=

Bayesunitary

1 1

2 2

| ( | 1 | 2) ( | | ) | 1
( | | ) | 2

in r L t R
r L t R

α β α
β

〉 〉 + 〉 → 〉 + 〉 〉
+ 〉 + 〉 〉

(almost equivalent)
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Where POVM measurement comes from

Initial state | |in k
k

c kψ 〉 = 〉∑
Interaction with ancilla

,
,

| | 0 | |k la
l a

Uk l〉 〉 → 〉 〉∑

, ,
, , ,

| | 0 | | | |in k k la k k la
k l a l k a

c U c Ul a l aψ
⎛ ⎞

〉 〉 → 〉 〉 = 〉 〉⎜ ⎟
⎝ ⎠

∑ ∑ ∑

| |a
a

rr a〉 = 〉

a combined Hilbert space system+ancilla)
(U comes from unitary transformation in 

Project ancilla onto ∑
*

, ,
,Norm Norm

1 1| | 0 | | | | |ain k k la k k la
l k a l k a

c U r c r Ul a r l rψ
⎛ ⎞ ⎛ ⎞〉 〉 → 〉 〈 〉 〉 = 〉 〉⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑

,r lkMSo, as a result:
ancilla | 0 | r〉 → 〉

system
,

,

Norm

|
|

r lk k
k l

k
k

M c
c

l
k

〉
〉 →

∑
∑ i.e.

Norm
|| r in

in
M ψψ 〉

〉 →

system ancilla projective

measurement
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Quantum trajectory formalism 
for the same system

Goan, Milburn, Wiseman, Sun, 2000
Goan, Milburn, 2001

Looks different, but equivalent to Bayesian formalism

ξ(t) - white noise

Ito form
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Stratonovich and Ito forms for nonlinear
stochastic differential equations 

0
( ) ( / 2) ( / 2)lim t

df t f t t f t t
dt tΔ →

+ Δ − − Δ
=

Δ

0
( ) ( ) ( )lim t

df t f t t f t
dt tΔ →

+ Δ −
=

Δ

Definitions of the derivative:

(Stratonovich)

(Ito)

Why matters? Usually

But if

( , )( ) ( , ) ( , ) ( ) ( , )
4

i
i i i k

k k

S F x td x t G x t F x t t F x t
dt dx

ξξ ∂
= + + ∑

GG G G
( ) ( , ) ( , ) ( )i i i

d x t G x t F x t t
dt

ξ= +
G G

2 2 2( )
2

S
df dt dtξξ= ≈df dtξ=

2 2 2( ) 2 , ( )f df f f df df df+ ≈ + �

Simple translation rule:
(white noise ξ), then

(Stratonovich)

(Ito)

Advantage of Stratonovich: usual calculus rules (intuition)
Advantage of Ito: simple averaging
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Methods for calculations
Monte Carlo

• “Ideologically” simplest
• In many cases most efficient

Idea:  • use finite time step Δt
• find probability distribution for  I(Δt)
• pick a random number for I(Δt)
• do quantum Bayesian update

-
-

Analytics (or non-random numerics)

• Be very careful about Ito-Stratonovich issue
• Use Stratonovich form for derivations (derivatives, etc.)
• Convert into Ito for averaging over noise
• Very good idea to compare with Monte Carlo and/or 

check second order terms in dt

30/44
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Fundamental limit for ensemble decoherence
Γ = (ΔI)2/4SI + γ

γ ≥ 0  ⇒ Γ ≥ (ΔI)2/4SI

ensemble 
decoherence rate

single-qubit 
decoherence

~ information flow [bit/s]

εO, εBA: sensitivities [J/Hz] limited by output noise and back-action

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

η ≤
detector ideality (quantum efficiency)

100%

A.K., 1998, 2000
S. Pilgram et al., 2002
A. Clerk et al., 2002
D. Averin, 2000,2003

2( ) / 41 II Sγη Δ
Γ Γ

= - =

1
2mτΓ ≥

(εO εBA - εO,BA
2)1/2 ≥ =/2   ⇔ Γ ≥ (ΔI)2/4SI + K2SI/4

22 /( )Im S Iτ = Δ
“measurement time” (S/N=1)

Danilov, Likharev,
Zorin, 1983

Translated into energy sensitivity: (εO εBA)1/2 ≥ =/2



University of California, RiversideAlexander Korotkov

Two ways to think about 
a non-ideal detector (η<1)

2( ) / 4I Sη Σ

Σ

Δ
=

Γ

qubit ideal
detector I(t)0S2

0

( )
4

I
SΣ

Δ
Γ =

noise

+
1S

0 1S S SΣ = +

qubit ideal
detector I(t)SΣ2

0
( )
4

I
SΣ

Δ
Γ =

dephasing
noise

1Γ
0 1ΣΓ = Γ + Γ

These ways are equivalent
(same results for any expt.)
fi matter of convenience



University of California, RiversideAlexander Korotkov

Nonideal detectors with input-output noise correlation

qubit
(ε, H)

ideal
detector

signal

quantum
backaction

noise

+
I(t)

S0+S1

ξ2(t) = Aξ1(t)

ξ3(t)

fully 
correlated ξ1(t)

S1

Id (t)
S0 classical

current

classical noise
affecting ε

classical noise
affecting ε

detector

�

11 22 12 11 22 0

12 12 11 22 12 11 22 0 0 12 12

22 Im [ ( ) ]

( ) ( ) [ ( ) ] [ ( ) ]

I

I

d d IH I t I
dt dt S
d Ii iH I t I iK I t I
dt S

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ ρ γ ρ

Δ
= − = − + −

Δ
= + − + − − + − −

A.K., 2002

1 0
0 1, I

I

AS S
K S S S

S
θ+

= = +
=

K – correlation between output
and ε–backaction noises

2 2( ) / 4 / 41 I II S K Sγη Δ +
Γ Γ

= - =
��

quantum efficiency :
2( ) / 4 II Sη Δ
Γ

=or
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A simple general form for a broadband 
linear detector (QPC, SET, etc.)

|1Ò
|2Ò

I(t)

|2Ò
|1Ò 2

11 11 1
2

22 22 2

( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

11 22
12 12

11 22

( ) ( )
( ) (0) exp( )exp( )

(0) (0)
iKI

ρ τ ρ τ
ρ τ ρ τ γτ

ρ ρ
−=

0
1 ( )I I t dt

τ
τ

≡ ∫
/ 2ID S τ=

decoherence
classical backaction (unitary)

1 2
noise I

I I I
S

Δ = -

quantum backaction (non-unitary,
“spooky”, “unphysical”)

Example of classical (“physical”) backaction:

no self-evolution 
of qubit assumed

Each electron passed through QPC rotates qubit
(sensitivity of tunneling phase for an asymmetric barrier)

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑

*arg( ) 0T TΔ ≠I1 I2

0qbH =
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A simple general form for a broadband 
linear detector (QPC, SET, etc.)

2
11 11 1

2
22 22 2

( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

11 22
12 12

11 22

( ) ( )
( ) (0) exp( )exp( )

(0) (0)
iKI

ρ τ ρ τ
ρ τ ρ τ γτ

ρ ρ
−=

0
1 ( )I I t dt

τ
τ

≡ ∫
/ 2ID S τ=

decoherence
classical backaction (unitary)

1 2
noise I

I I I
S

Δ = -

Another example of classical backaction: 

no self-evolution 
of qubit assumed

Correlation between voltage and current noises in SET

2e

Vg V

I(t)

V

ϕ (t)

I(t)
ΓL

ΓR

0IS ϕ ≠
2 2

(0)

(0) (0) 2( )
L R

L R

I

II

S

S S
ϕ

ϕϕ

Γ − Γ
=

Γ Γ+ A.K., 1994

(easy to understand when ΓL <<ΓR)

quantum backaction (non-unitary,
“spooky”, “unphysical”)

0qbH =

35/44



University of California, RiversideAlexander Korotkov

Narrowband linear measurement
Difference from broadband: two quadratures

System: qubit in cQED setup + parametric amplifier

qubit
(transmon)

Paramp traditionally discussed in terms of noise temperature

resonator
paramp
pumps

microwave
generator

mixer
I(t)

Q(t)

output (two
quadratures)quantum signal 

(2 quadratures)

0

2

θ
ωθ

≥

≥
=

for phase-sensitive (degenerate, homodyne) paramp

for phase-preserving (non-degenerate, heterodyne) paramp

We will discuss it in terms of qubit evolution due to measurement

ωd ωr

ωa ωb

Haus, Mullen, 1962
Giffard, 1976

Yale

Ackn.: Likharev,
Devoret
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Simplest case

qubit
(transmon)

resonator
paramp
pumps

microwave
generator

mixer
I(t

)

Q(t)

output (two
quadratures)

ωd ωr

ωa ωb

Blais et al., 2004
Gambetta et al., 2006, 2008

† †

2
qb

z r zH a a a a
ω

σ ω χ σ= ++
�=

= =

max( , )r
RQ

ω κ= Γ Ω�

(dispersive)

(Markovian, “bad cavity”)

outκ κ= (everything collected; i.e. reflection)

χ κ� (weak response)

rdω ω= (center of resonance, only
phase change if transmission) |2Ò

|1Ò

cos( )d tω

sin( )dtω

carries information 
about qubit  (σz)
(quantum back-action)

carries information about fluctuating 
photon number in the resonator
(classical back-action)

assume everything most ideal
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qubit

resonator
paramp
pumps

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

ωa ωb

Phase-sensitive (degenerate) paramp
pumps  ωa+ωb =2ωd quadrature cos(ωd t +ϕ) is amplified, 

quadrature sin(ωd t +ϕ) is suppressed

|2Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
amplifie

d

get some information (~cos2ϕ) about qubit state and 
some information (~sin2ϕ) about photon fluctuations

Assume I(t) measures cos(ωd t +ϕ), then Q(t) not needed 

2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

iKI
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

0
1 ( )I I t dt

τ
τ

≡ ∫ / 2ID S τ=

I(t)

cosg eI I I ϕ− = Δ

(rotating frame)

sin
I

IK
S

ϕΔ
=

2 2 2
2( cos ) 8

4 4 4
I

I I

I S I nK
S S
ϕ χ

κ
Δ Δ

Γ += = =

Same as for QPC/SET, but trade-off (ϕ)
between quantum & classical back-actions

unitary
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qubit

resonator
paramp
pumps

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

ωa ωb

Phase-preserving (nondegenerate) paramp
pumps  ωa+ωb =2(ωd +δω) tϕ δω=

Now information in both I(t) and Q(t).

2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i QK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

0
1 ( )I I t dt

τ
τ

≡ ∫ 2
ISD
τ

=

2g e
II I Δ

− =

(rotating frame)

2 I

IK
S

Δ
=

2 2 28
8 8I I

I I n
S S

χ
κ

Δ Δ
Γ += =

Equal contributions to ensemble dephasing
from quantum & classical back-actions

|0Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
I(t)

Q(t)

tδω

Choose 
I(t)  ↔ cos(ωdt)  (qubit information)
Q(t) ↔ sin(ωdt)   (photon fluct. info)

Small δω ⇒ can follow ϕ(t)
Large δω (>>Γ) ⇒ averaging over ϕ (phase-preserving)

0
1 ( )Q Q t dt

τ
τ

≡ ∫
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Why not just use Schrödinger 
equation for the whole system?

qubit

detector
information

Technical reason: Outgoing information (measurement result)  
makes it an open system

Impossible in principle!

Philosophical reason: Random measurement result, but 
deterministic Schrödinger equation

Einstein: God does not play dice
Heisenberg: unavoidable quantum-classical boundary

40/44
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Measurement vs. decoherence

measurement  = decoherence (environment)

Widely accepted point of view:

Is it true?
• Yes, if not interested in information from detector

(ensemble-averaged evolution)

• No,  if take into account measurement result
(single quantum system)

Measurement result obviously gives us more information 
about the measured system, so we know its quantum state 
better (ideally, a pure state instead of a mixed state)
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Can we verify the Bayesian formalism 
experimentally?

Direct way:

prepare partial
measur.

control
(rotation)

projective
measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency 
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
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Experimental predictions and proposals
from Bayesian formalism

• Direct experimental verification (1998)
• Measured spectrum of Rabi oscillations (1999, 2000, 2002)
• Bell-type correlation experiment (2000)
• Quantum feedback control of a qubit (2001, 2004, 2009)
• Entanglement by measurement (2002)
• Measurement by a quadratic detector (2003) 
• Squeezing of a nanomechanical resonator (2004)
• Violation of Leggett-Garg inequality (2005) 
• Partial collapse of a phase qubit (2005)
• Undoing of a weak measurement (2006, 2008) 
• Decoherence suppression by uncollapsing (2010)
• Persistent Rabi revealed in noise (2010) 

3 solid-state experiments realized so far



University of California, RiversideAlexander Korotkov

Conclusions

● Quantum measurement is the most controversial 
and fascinating part of quantum mechanics 

● It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

● Classical information plays a very important part 
in quantum measurement 

● Measurement backaction necessarily has a “spooky” part 
(“unphysical”, informational, without a mechanism); 
it may also have a “classical” part (with a physically
understandable mechanism) 
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