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Numerical propagator method for driven systems

e Example:

1Y
Vg
e Transport of Cooper pair through entire device only changes state of
voltage source behind the scenes =
e Symmetry which does not conserve energy, but changes it by +2eV

e Numerical diagonalization of H produces corresponding multiplets
E,g”) = Ep. + 2eVn: huge redundancy is drain on resources

e Equivalent: eliminate one d.o.f. at price of driving term with
period T = 2wh/2eV. Makes connection to wide class of systems with
AC-driving or more generally time-periodic Hamiltonian:

AW (t) = H(H)W (L) , H+T) = H(t)



Almost universal: Floquet method—Fourier expansion of H(t), W(t).
Determination of quasi-energies ¢, in Wi(t) = wug(t) exp(—ieit/h),
u(t+7T) = u(t) becomes eigenproblem in extended Hilbert space

Fourier index is as extra d.o.f. Merely reversed previous elimination,
so still problems with non-uniqueness and resource use

Finally cracked with numerical propagator method: integrate matrix
Schrodinger eqgn

thoU(t) = H@)U(t) , U0 =1
and diagonalize U(T)
All energies in one multiplet get mapped to single phase eigenvalue
Q= exp(—z'e,g”)T/h) of unitary operator!

Fully tested and confirmed on 1-qubit NMR problem (Rabi oscilla-
tions), where one can compare with analytic soln. N.B.: need to
integrate only over short driving period, and still find oscillations on
much longer Rabi period!



Duffing model

e Apply these ideas to Duffing model: oscillator with weak nonlinearity,
damping, and near-resonant driving,

x + w%w = —¢[vi + az> + fcos(wt)]
Classical bistability makes it interesting qubit detector

e Already relevant in experiments: superconducting implementation is
called Josephson bifurcation amplifier. Since both final states are
superconducting, one can e.g. try to perform repeated quantum non-
demolition (QND) measurements on a qubit system [A. Lupascu et
al., Nature Physics 3, 119 (2007)]

e In quantum domain, bistability should be imperfect due to tunneling
between the two limit cycles (limiting detector performance)

e Instead of Hamiltonian acting on wave function: Liouville
superoperator acting on density matrix (quantum master equation)



ihp = [H(t), p] + ih- (i+1)(2apa’ — alap - pala)
+ ih%ﬁ(Qana —aa'p — paal)
= L(t){p}

Hqg(t) = hwoaTa + em [%:1:4 + fxcos(wt)| |,

1

h
T n —
(ta), A=

2mwq
e For analogy with undamped time-periodic systems, can now study
evolution superoperator S(t=27/w)
e But Markov treatment of damping suspect on short time scale w—l;
only need dynamics on long scale (ey) ™1

€Tr =



e Extract slow dynamics through rotating-wave approximation (RWA),

pi) = UMpMU(), U =e N,  N=da
zj—i = [Hg, p] + %(”ﬁ—I-l)(Qalb"a]L —a'ap — pa'a) + %ﬁ(QaTﬁa — aa'p — paal)
= L{p} ,
_ Q/ f! 3a/
S > +2\/§(a+a)+8f’2( + N)
e Rescaled variables:
2
Q/=&, Qz(wz—wg)/e, % oz3f37
WY woy

T = et f’zgx/%

e Parallels canonical transform to “Van der Pol coordinates’” in classical
case; f’ only “quantum’” parameter

e Fast scale ~ w1 eliminated from problem
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Spectral analysis

e In coarse-grained RWA approach, revisit idea from time-periodic case:
diagonalize L!

e Unique eigenvalue 5\1 = 0, with hermitian, normalizable eigen-p;:
stationary state

e Unique 2nd-smallest \», with hermitian, traceless po

e p> has same population peaks as pq, but with opposite signs causing
equilibration

e Re)> = 0 = incoherent tunneling
e IMmM> < 0 = stability

o [\ < |Im Xk23| — separation of time scales: pj o suffice for late
times, many p’s needed for initial state



Conclusions

e FOor same parameters as the classical problem, bistability disappears
in quantum case due to tunneling . ..

e ... opening up third, ultra-long, time scale (ey|Xs])™! with no
classical counterpart

e Error process for qubit readout: if final state independent of initial
conditions, no detection took place

e T hus, to observe counterpart to classical bistability, must go beyond
stationary averages—either full distributions or dynamic evolution

e Spectral approach cleanly isolates tunneling from intermediate-time
dynamics; enables study of classical limit f' 1

e Try to make analytical sense, e.g. in coherent-state representation



