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Quantum Phase transition
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Frustrated systems

 These systems usually e Especially, there are
have highly degenerate topological phases for
ground states. some frustrated

* This implies that the systems (no order
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guantum phase
transition. t
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Entanglement measure

The degeneracy of quantum state manifests as
guantum entanglement.

The entanglement measure can be used to
characterize the topological phases.

However, there is no universal entanglement
measure of many body systems.

Instead, the entanglement entropy like
guantities are used.



Global entanglement

Global entanglement [wei et al. PrA 68, 042307(2003) )

e Consider pure states of N particles “//> The global
multipartite entanglement \l//> can be quantified by
considering the maximum fidelity.

A = maXKl// ‘¢>‘

 The larger A . indicates that the less entangled.

* A well-dfiened global measure of entanglement is
E(y)=~logh’,,
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Global entanglement density and its h derivative for the ground
state of three systems at N. Ising; anisotropic XY model; XX model.



Our aim

We are trying to check if the entanglement
measure can characterize the quantum phase
transition in 2d spin systemes.

Should rely on the numerical calculation

Global entanglement can pass the test but is
complicated for numerical implementation.

One should look for more easier one.



Matrix/Tensor Product States

* The numerical implementation for finding the
ground states of 2d spin systems are based on
the matrix/tensor product states.

e These states can be understood from a series
of Schmidt (bi-partite) decomposition. Itis
QIS inspired.

* The ground state is approximated by the
relevance of entanglement.



1D quantum state representation
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e Representation is efficient
e Single qubit gates involve only local update
e Two-qubit gates reduces to local updating



“"Solve” for MPS/TPS

In old days, the 1d spin system is numerically
solved by the DMRG(density matrix RG).

DMRG=Solving MPS based on von Neuman
entropy

For translationally invariant state, one can
solve the MPS by variational methods.

More efficiently by infinite time-evolving block
decimation(iTEBD) method.



The dynamic of quantum state

* Realtime |¥,)=exp (-iHt)|'¥,)
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Evolution quantum state
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Matrix product state for 1D Ising model

* Ising model in a transverse magnetic field

N
— Z =z X
H——E oo, ,th o,
i=1

* The ground state of H exhibits a second-order quantum

phase transition as h is tuned across a critical value h = 1.

Magnetization along the z direction .
The derivative of magnetization
has a singularity at h=1.01 (D =05)
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Global entanglement from matrix product
state for 1D system

* Matrix product state (MPS) form
d
‘W>: Z Tr(Ap‘Apz...ApN)‘pl,pz...pN>

PisPa--Py=l
* For a system of N spin 1/2.
the separable states |¢)=®(cost, 1)
represented by a matrix B"(0)=cos6,, B"(1)=sin,

O> +sin 6,

* the fidelity can be written by transfer matrix
(vo)|=|rr @i7;7;..1;)] where TA=F %)@ 5%:)

[ Q.-Q. Shi, R. Orus, J.-O. Fjaerestad, H.-Q. Zhou, arXiv:0901.2863 (2009) ]



Global entanglement from matrix product state

for 1D Ising model

* The global entanglement density
and its h, the entanglement has
a nonsingular maximum at h=1.1.

* The von Neuman entanglement

entropy also has similar feature.
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D-effectiveness for MPS of 1D Ising model

e Effective critical point hc* as a function of D

1.08
1.07
1.06
1.05
hc 1.04
1.03
1.02
1.01

1——————————————-—-

099




Tensor product state for 2D spin systems

* Tensor product state (TPS) form
‘l//> = Z Tr(A™ A" .. A™) P1,1>p2,1°--pN,N>

pl,lapz,l'"pN,N:l

* The fidelity can be written by transfer matrix
(w|o)| = |Tr (1,77, ..T)})
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e Itis difficult to calculate tensor trace (tTr), so we using
the “TNRG” method to reduce the exponentially
calculation to a polynomial calculation.



The TNRG method-I

* First, decomposing the rank-four tensor into two two
rank-three tensors.

53 Trd;lu = UAV+
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The TNRG method-II

* The second step is to build a new rank-four tensor.
This introduces a coarse-grained square lattice.
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a1 22 — = a 8 g
Si a3 — —
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* Repeat the above two steps, until there are only four
sites left. One can trace all bond indices to find the
fidelity of the wave function.



Order parameter from MPS of transverse Ising

Ising model in a transverse magnetic field
H=-) oo +h o}

Using the numerical method to compute the ground state
wave function based on TPS representation.

The transition point between the magnetic and paramagnetic
states is h=3.04 unbiased quantum Monte and the mean-field
value h=4. 0.5
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Global entanglement for 2D transverse Ising

* The global entanglement density v.s. h, the entanglement has
a nonsingular maximum at h=3.25.
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Scaling of entanglement

Entanglement entropy for a reduced block in spin chains

L spins
— _—
P
é/g/é/ : | . /é//%//
p. S,

[ Vidal et al. PRL,90,227902 (2003) ]
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Scaling of entanglement

[ Latorre et al. PRB,78,024410 (2008) ]

* For matrix product state representation
for a fixed value of D, this entropy saturates at a
distance L~D¥ (kind of correlation length)
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Scaling of entanglement

* |[n 2D system, we want to calculate the block
entropy and block global entanglement.

Could we find the scaling behavior like 1D
system?
S,, ———L(+cInL)

Area law



Block GE v.s. Quantum state RG

* Numerically, it is involved to calculate the
block entanglement because the block trial

state is complicated.

* |nstead (Wei ‘08): entanglement per block of
size L = entanglement per site of the L-th time

guantum state RG(merging of sites).

* We can the use quantum state RG to check
the scaling law of GE.



1D Quantum state RG

Quantum state RG [ Verstraete et al. PRL 94, 140601 (2005) )

______________________________

* Map two neighboring spins to one new block spin
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2D Quantum state RG

____________________________________

____________________________________

 Map one block of four neighboring spins to one new
block spin.

* By TRG and SVD method
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Dynamics related issues

* Use real time iTEBD, one can study some
dynamical issue related to quantum

entanglement.

* One is to study evolution of the global
entanglement, such as its creation and death.

 The other is to see if entanglement will help
the quantum state transfer or not.



Quantum state transfer

* Teleportation

We need maxima entangle state and local operators between
sender and receiver.
C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

* Swap

It needs a series of swap gates

* The spin chain
S. Bose, Phys. Rev. Lett. 91, 207901 2003



The protocol

Stepl.

The initial quantum state between sender(sth) and receiver(rth)
is ground state.

I/
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Step?2.

The sender prepares a encoded spin (s=1/2).

), =cos2{0) + ¢ sin 1)



Step3.

Both sender and receiver open the interaction with quantum

channel, and the state evolves with Heisenberg interaction.

—JZO'°G —2

<i,j>

Step4.
The average fidelity in the Bloch sphere.

T

P, 1s reduced density matrix for rth site.

P,(D|y) d



The channel entanglement

 What will happen if we change the initial
unentangle quantum channel to entangled
state?

* |s it faster to reach the optimal fidelity?

e will the fidelity become better when the
channel is entangled at beginning?



