Applications of Synchrotron Radiation in Transition Metal Oxide Nanomaterials W. F. Pong

Department of Physics, Tamkang University, Tamsui, Taiwan

Outline

Electronic Structure of ZnO Nanorods

Electronic and Ferromagnetic Properties of Zn_{1-x}Mg_xO and Zn_{1-x}Co_xO Nanorods

Physical properties of nano-materials

Various Au particles and melting points

Cu-Cu distance with particle size

Different dimension of Au particles and its color *Generate different color (CdSe nanoparticles 2.1~3.5 nm)*

T. Castro, R. Reifenberger et al., Phys. Rev. B 1990 P. A. Montano et al., Phys. Rev. Lett. 1986

Experimental

XMCD Sum Rules

Dragon Beamline

Experimental Techniques:

incident

x-ray beam

I,

measure I_f as function of incident energy

sample

I-H Hong et al., Nucl. Instru. & Meth Phys. Res. A467-468, 905 (2001).

Schematic of BL7.0.1-XES system at ALS

Laser from aligned ZnO nanowires

Huang et al., Science 292, 1897 (2001)

ZnO nanoparticles and defectrich nanorods

ZnO, wide band gap semiconductor, has received intensive attention due to potential technological applications:

- ✓ Photocatalysts
- ✓ Light emitting diodes (LED)
- ✓ Tunable band gap from 2.8 to 4 eV by alloying with Cd or Mg
 ✓

Two common defects in ZnO

Frenkel defect : an ion moves to an interstitial site. (Interstitial)

Schottky defect : absence of an ion from a site. (Vacancy)

VOLUME 47, NUMBER 12

First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS

Near-edge x-ray absorption fine structure characterization of compositions and reactivities of transition metal oxides

J. G. Chen,^{a)} B. Frühberger, and M. L. Colaianni Corporate Research Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801

(eV)

C+D O K-Edge $ZnO(d^{10})$ units) NiO (d⁸) (arb. FeO (d⁶) Intensity NEXAFS Cr_2O_3 (d³) TiO₂ (d⁰) 520 570 530 540 550 560

Incidenct Photon Energy

J. G. Chen. et al., J. Appl. Phys. 79, 7983 (1996)

- t_{2g} (TM 3d; O 2p π) A
- e_g (TM 3d; O 2p σ) **B**
- a_{1g} (TM 4s; O 2p σ)
- t_{1u} (TM 4p; O 2p π)

Aligned ZnO Nanowires

J. W. Chiou et. al., Appl. Phys. Lett. 84, 3462 (2004)

Carbon Nanotubes

J. W. Chiou et al., Appl. Phys. Lett. 81, 4189 (2002)

SEM & TEM Images

The TEM image shows that the radius of tip decreases gradually

Probably insertion of five- or seventhmembered rings and dangling bonds

\Rightarrow the tip has a much larger curvature

Electronic Structure and Localized States at Carbon Nanotube Tips

D. L. Carroll,* P. Redlich, and P. M. Ajayan[†]

Max-Planck-Institut für Metallforschung, Seestraße 92, 70174 Stuttgart, Germany

J. C. Charlier,[‡] X. Blase,[§] A. De Vita, and R. Car

Institut Romand de Recherche Numerique en Physique des Materiaux IN-Ecublens, CH-1015 Le (Received 12 August 1996; revised manuscript received 25 November 1996 **PRL 78, 2811 (1997)**

Field Enhancement of Localized DOSs at (5,5) CNT Tips

Field Enhancement of Localized DOSs at (9,0) CNT Tips

DOS is normalized to one atom

C. W. Chen et al., Appl. Surf. Sci. 228, 143 (2004)

Diameter-dependent ZnO Nanorods

J. W. Chiou et. al., Appl. Phys. Lett. 85, 3220 (2004)

C. W. Chen et. al., Appl. Phys. Lett. 88, 241905 (2006)

J. J. Wu et al., Appl. Phys. Lett. 85, 1027 (2004)

Mg ↑ emission energy ↑ Band gap increasing ↑ ?

Density of States

Mg: ZnO

CASTEP Partial DOSs

Density of States (electrons/eV)

CASTEP Partial DOSs

Density of States (electrons/eV)

Band Structure

Density of States

Electron Density

Larger charge transfer from Mg \rightarrow O

More localized O p orbital in the Mg addition

Dilute Magnetic Semiconductor (DMS)

Fig. 1. Three types of semiconductors: (A) a magnetic semiconductor, in which a periodic array of magnetic element is present; (B) a diluted magnetic semiconductor, an alloy between nonmagnetic semiconductor and magnetic element; and (C) a nonmagnetic semiconductor, which contains no magnetic ions.

Theoretical Predication

Fig. 3. Computed values of the Curie temperature $T_{\rm C}$ for various p-type semiconductors containing 5% of Mn and 3.5×10^{20} holes per cm³. **Dietl** *et al.*, **Science 287**, 1019 (2000) H. Ohno et al., Science 281, 951 (1998)

Experimental Results

- Zn_{1-x}Co_xO Film T_c ≈ 300 K @ x=0.15 [K. Ueda *et al.*, Appl. Phys. Lett. 79, 988 (2001)]
- $Ti_{1-x}Co_{x}O_{2}$ Film $T_{c} > 400$ K @ x=0.07

[Y. Matsumoto et al., Science 291, 854 (2001)]

Controversy: High-temperature n-type ferromagnetic ordering arises originally from Co clusters/precipitates or DMS intrinsic properties ?

Exchange Interactions

Direct exchange

Nearest-neighbor interaction, ferromagnetic, requires mixed cation valence for $3d^n-3d^{n+1}$ fluctuations.

Superexchange

Nearest-neighbor interaction, usually antiferromagnetic.

RKKY interaction

Long-range oscillatory interaction.

There are two sources of magnetism in dilute n-type ferromagnetic oxides :

- One associated with 3d dopant cations

- The other associated with defects in the oxides

J. M. D. Coey et al., Natural Materials 4, 173 (2005)

Zn_{1-x}Co_xO Nanorods

Local spin-density approximation

K. Sato and H. Katayama-Yoshida, Jpn J. Appl. Phys., L334 (2001)

Since a larger intensity of feature A_2 corresponds to more localized Co 3*d* orbitals and consequently larger Co magnetic moment.

Exchange Interactions

$$-J_{sd}S.s|\psi(r)|^2\Omega$$

$$T_{C} = \left[S(S+1)s^{2}x\delta n/3\right]^{1/2} J_{sd}\omega_{c}/k_{B}$$

Defects were formed bound magnetic polarons and coupled with Co 3d moments

The overlapping of two similar magnetic polarons to induce spinspin interactions between Co ions

$Zn_{1-x}Co_xO$ v.s. $Zn_{1-x}Mg_xO$

J. W. Chiou et. al., Appl. Phys. Lett. 89, 043121 (2006)

Acknowledgments

J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, S. C. Ray, F. Z. Chien and D. C. Ling Department of Physics, Tamkang University, Tamsui, Taiwan

M.-H. Tsai Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan

I.-H. Hong Department of Applied Physics, National Chiayi University, Chiayi, Taiwan

C.-H. Chen, R. Klauser, J. F. Lee and H.-J. Lin National Synchrotron Radiation Research Center, Hsinchu, Taiwan

M.-H. Yang, S. C. Liu and J.-J. Wu Department of Chemical Engineering, NCKU, Tainan, Taiwan

C. W. Chen Department of Material Engineering, NTU, Taipei, Taiwan

S. L. Wei, C. Y. Wen, C. W. Hsu, L. C. Chen Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan

C. T. Wu, K. H. Chen Institute of Atomic and Molecular Science, Academic Sinica, Taipei, Taiwan

J. -H. Guo Advanced Light Source, LBNL, Berkeley, USA