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Research Interests

•(0-dim) Atomic clusters
•(1-dim) Nanowires and Nanotubes

–Si nanowires

•(2-dim) Surface systems
–High index surfaces
–Metal-induced semiconductor reconstructions
–Clusters on surfaces

•(3-dim) Crystals
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Outline of talk
•Geometries and stabilities of Ag-doped Sin

(n =1-13) clusters: a first-principles study
–Introduction
–Computational details
–Result and Discussion
–Conclusions

F.C. Chuang, Y.Y. Hsieh, C.C. Hsu and M.A. Albao, Geometries and stabilities
of Ag-doped Sin (n =1 - 13) clusters: a first-principles study, accepted in The
Journal of Chemical Physics (2007).
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Atomic clusters, Nano-cluster,
Nano-particles

•Regarded as a phase of
materials.

•Play an very important
role in nanotechnology

•Structural studies of
isolated clusters and of
them on a surface
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Atomic clusters
• Fundamental Questions need to be answered:

– How do these structures nucleate and grow?
– How do clusters transform from one structure to another

as successive atoms are added during growth?
– At what size does the bulk structure prevail?
– atomic structure plays a critical role in determining all

cluster properties
– theoretical and experimental determination of

cluster structure are major obstacles.
– much structural information has been obtained indirectly,

from experimental observations of other cluster
properties

– it has led to incomplete and sometimes ambiguous
interpretation.
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Recent developments

•“A recent significant development
innanostructures of silicon is the possibility to
produce novel forms such as silicon fullerenes
and nanotubes using metal encapsulation.”

•“These are more stable than nanostructures
formed from elemental silicon, have high
symmetries and potential for mass production
with size selection. Their electrical, magnetic
and optical properties can be changed by
changing the metal atoms.”

Abhishek Kumar Singh, Vijay Kumar and Yoshiyuki Kawazoe, Metal
encapsulated nanotubes of silicon and germanium, Journal of Materials
Chem., 14 555 (2004).
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Tunable optical properties

Rui-Hua Xie, Garnett W. Bryant, Jijun Zhao, Tapas Kar, and Vedene H. Smith, Jr.
Tunable optical properties of icosahedral, dodecahedral, and tetrahedral clusters
Phys. Rev. B 71, 125422 (2005)

Calculated
absorption spectra
for 14 icosahedral,
dodecahedral, and
tetrahedral clusters.
All spectra were
broadened by 0.06
eV to simulate finite
temperature. The
arrow indicates the
first singlet
excitation.

Controlling HOMO-LUMO gap =>optical
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Formation of Metal-Encapsulating Si Cage
Clusters

•They expect a metal-
encapsulating Si cluster
to act as a tunable
building block of new
phases of materials.

•For instance, it will have
a HOMO-LUMO gap
that can be controlled by
choosing the endohedral
metal atom.

H Hiura, T Miyazaki, and T. Kanayama, Formation of Metal-Encapsulating Si Cage Clusters , PRL 86, 1733, (2001)
P. Sen and L. Mitas, Electronic structure and ground states of transition metals encapsulated
in a Si12 hexagonal prism cage, Phys. Rev. B 68, 155404 (2003)
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Metal encapsulated nanotubes of silicon and
germanium

Abhishek Kumar Singh, Vijay Kumar and Yoshiyuki Kawazoe, Metal encapsulated
nanotubes of silicon and germanium, Journal of Materials Chem., 14 555 (2004).
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Magnetic moments of metal-caged
Si clusters

•computationally prediction: metal-
encapsulated icosahedral superatoms of
germanium and tin, ZnGe12 and CdSn12,
with large HOMO–LUMO gaps or MnGe12
and MnSn12, with high (5μB) magnetic
moments.

•Magnetic moment => nano-spintronics
applications
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Potential Energy Surface

Atomic configuration or conformation

No matter what level of material design you use, potential energy is expressed as
a function of atomic configuration.

Question: how to obtain the global minimum structure.
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Simulating annealing MD approach to
obtain the local minima
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Experimental finding
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Mass Spectra for Metal-Silcon clusters

J. B. Jaeger, T. D. Jaeger, and M. A. Duncan, Photodissociation of Metal-Silicon Clusters: Encapsulated
versus Surface-Bound Metal, J. Phys. Chem. A, Vol. 110, No. 30, 2006
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Photo-dissociation of mass
selected AgSi7+ and AgSi10

+

J. B. Jaeger, T. D. Jaeger, and M. A. Duncan,
Photodissociation of Metal-Silicon Clusters: Encapsulated
versus Surface-Bound Metal, J. Phys. Chem. A, Vol. 110, No.
30, 2006
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Question needs to be answered

•Whether Ag-doped Si clusters is a good
candidates for future applications?

•A systematical study is highly desired to
answer this question.
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Computational Methods
• Ag has a filled 4d10 shell combined with a 5s1 valence shell.
• Electron Configuration: [Kr]5s14d10

• generalized gradient approximation (GGA) to spin polarized
density functional theory using projector-augmented-wave
potentials (PAW), as implemented in VASP.

• The kinetic energy cutoff is set to 249.8 eV (18.36 Ry).
• The structural optimization is done with the conjugate gradient

(CG) algorithm and without symmetry until the forces on the
atoms are less than 0.001 eV/Ang.

• For the AgSi_{n} and Si_{n} clusters, the length of the
supercell is set to 15 Ang.

• In order to optimize certain proposed models, a quasi-
Newtonian algorithm was used to relax models to their local
minima.
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AgSin (n=1 –5)
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AgSin (n=6 –8)
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AgSi9
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AgSi10
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AgSi11
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AgSi12
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AgSi13
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Binding Energy
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Fragmentation energy
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Second Difference in Binding
Energy
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HOMO-LUMO gaps

HOMO-LUMO gaps: the gaps between the highest occupied
molecular orbital and the lowest
unoccupied molecular orbital
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3D-total charge distribution iso-
surface of AgSi7 and AgSi10
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AgSi10 Total Charge HOMO LUMO
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Charge transfer
accumulation and depletion

AgSi7

AgSi10
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Conclusion
• Our results indicate that Ag atom prefers to cap the Si clusters

rather than be embedded inside Si clusters.
• AgSi_{7} and AgSi_{10} are found to be two relatively stable clusters

in agreement with experimental observations.
• In addition, for these clusters, doping leaves the inner core structure

of the clusters largely intact. In contrast, the same study reveals that
especially for relatively unstable clusters, substitution may compete
with capping and may cause structural changes in the inner
structure.

• Additionally, fragmentation analysis reveals that the primary
pathway is through evaporation of a silver atom from a Ag-doped
clusters, which is also in consistent with experimental data.

• Our data have also uncovered a secondary pathway for n > 7
(except n = 11) in which the Ag-Si cluster dissociate into Si_{7} and
a smaller fragment AgSi_{n-7}. The AgSi_{11} cluster dissociates
into a stable Si_{10} and a small fragment AgSi.

• Unfortunately, Ag-doped Si clusters are not best candidates for
tailoring optical or magnetic properties.


