VASP WORKSHOP AT NCHC

March 19 - 20 2005

Lecture Notes

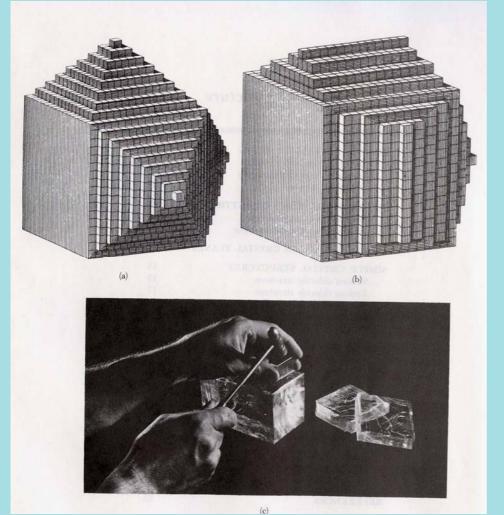
DAY 1 Band Structure Theory

Lecturer: T. C. Leung
Department of Physics
National Chung Cheng University

Outline

- Crystal Structure
- Band Theory
- Density Functional Theory
- Local Density Functional Approximation
- Band Structure and Density of States

Chapter 1 Crystal Structure



An ideal crystal is constructed by the infinite repetition of identical structure units in space.

Bravais Lattice: specifies the periodic array in which the repeated units of the crystal are arranged. The unit themselves may be single atoms, groups of atoms, molecules, and ions.

Crystal structure = lattice + basis

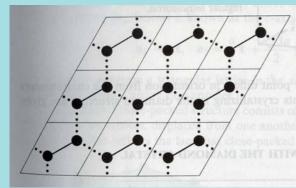


Figure 4.17
The honeycomb net, drawn so as to emphasize that it is a Bravais lattice with a two-point basis. The pairs of points joined by heavy solid lines are identically placed in the primitive cells (parallelograms) of the underlying Bravais lattice.

A Bravais lattice consists of all points with position vectors R of the form

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

 $\vec{a}_1, \vec{a}_2, \vec{a}_3$: primitive vectors

A basis of atoms is attached to every lattice point, with every basis identical in composition, arrangement, and orientation. The position of the center of an atom i of the basis relative to the associated lattice point is

$$\vec{\tau}_i = x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3$$
 where $0 \le x_1, x_2, x_3 \le 1$

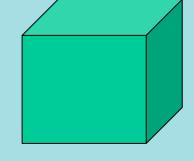
Example of Bravais lattice

1. Simple cubic lattice

$$\vec{a}_1 = a\hat{i}$$

$$\vec{a}_2 = a\hat{j}$$

$$\vec{a}_3 = a\hat{k}$$

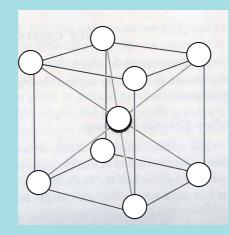


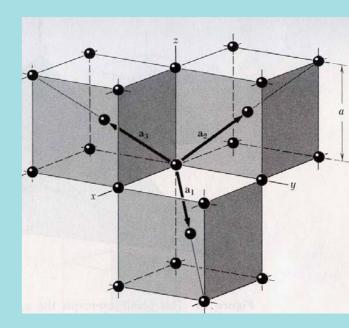
2. Body center cubic lattice

$$\vec{a}_1 = \frac{a}{2} \left(-\vec{i} + \vec{j} + \vec{k} \right)$$

$$\vec{a}_2 = \frac{a}{2} \left(\vec{i} - \vec{j} + \vec{k} \right)$$

$$\vec{a}_3 = \frac{a}{2} \left(\vec{i} + \vec{j} - \vec{k} \right)$$



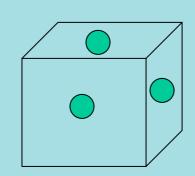


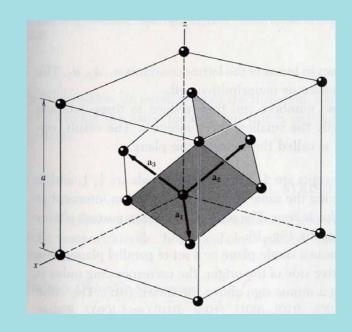
3. Face centered cubic lattice (fcc)

$$\vec{a}_1 = \frac{a}{2} \left(\vec{j} + \vec{k} \right)$$

$$\vec{a}_2 = \frac{a}{2} \left(\vec{i} + \vec{k} \right)$$

$$\vec{a}_3 = \frac{a}{2} \left(\vec{i} + \vec{j} \right)$$



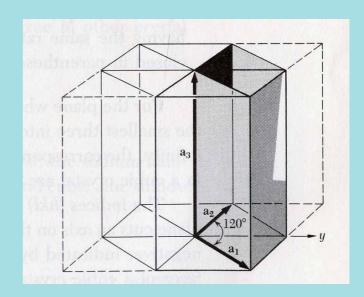


4. Hexagonal lattice

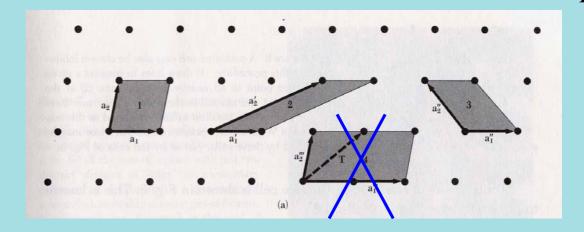
$$\vec{a}_1 = a \left(\frac{1}{2} \vec{i} + \frac{\sqrt{3}}{2} \vec{j} \right)$$

$$\vec{a}_2 = a \left(\frac{1}{2} \vec{i} - \frac{\sqrt{3}}{2} \vec{j} \right)$$

$$\vec{a}_3 = c\vec{k}$$

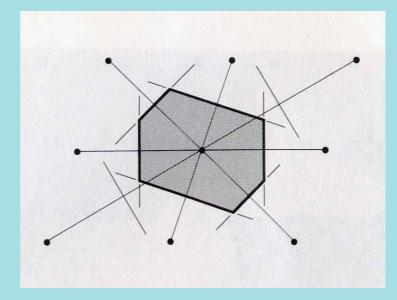


Primitive cell



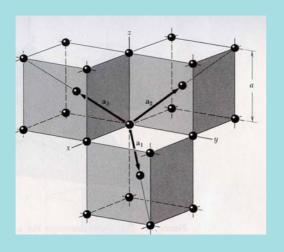
Wigner-Seitz primitive cell

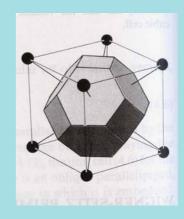
Drawing lines connecting the point to all others in the lattice, bisecting each line with a plane, and taking the smallest polyhedron containing the point bounded by these planes



Example of Wigner-Seitz primitive cell

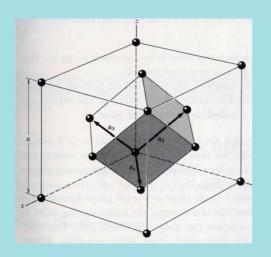
bcc

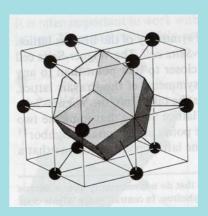




Wigner-Seitz primitive cell of bcc lattice

fcc





Wigner-Seitz primitive cell of fcc lattice

H ¹ 4K hcp 3.75 6.12		the st	ated Vycko	iven a	ble 3 re at roor rature i . 1, Ch	om t	emper	rature For fur	for the ther de	most co	ommons of	the el	ements							He ⁴ 28 hcp 3.57 5.83
Li 78K bcc 3.491	Be hcp 2.27 3.59															iamond 3.567	N 20K cubic 5.66 (N ₂)	Complex (O ₂)	F	Ne 4K fcc 4.46
Na 5K bcc 4.225	Mg hcp 3.21 5.21	Crystal structure a lattice parameter, in A c lattice parameter, in A													d	Si diamond 5.430	P	S complex	CI complex (CI ₂)	Ar 4K fcc 5.31
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27				Cr Mo cut 2.88 cor Mo bcc hc 3.15 2.		Fe bcc 2.8	200	o fcc		Cu fcc 3.61	Zn hcp 2.66 4.95	Ga	lex d	iamond 5.658	As rhomb.	Se hex. chains Te hex. chains	Br complex (Br ₂)	Kr 4K fcc 5.64 Xe 4K fcc 6.13
Rb 5к bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	hcp 3.23					Ru hcp 2.7 4.2	fcc 1 3.8	fcc		Ag fcc 4.09	Cd hcp 2.98 5.62	In tetr. 3.25 4.95	d 6	in (α) iamond 5.49	Sb rhomb.			
Cs 5K bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.05	10/10/20	c bc	С	Re hcp 2.76 4.46	Os hcp 2.7 4.3	fcc 4 3.8	100 mm		Au fcc 4.08	Hg rhomb.	TI hcp 3.46 5.52	f 4	Pb cc 1.95	Bi rhomb.	Po sc 3.34	At —	Rn —
Fr —	Ra —	Ac fcc 5.31		Ce fcc 5.16	Pr hex. 3.67 ABAC	No he 3.6	x.	Pm —	Sm complex	Eu bcc 4.58	Gd hcp 3.6 5.7) h	cp h		Ho hcp 3.58 5.62		p ho	p fc	c ho	u 50 55
			15	Th fcc 5.08	Pa tetr. 3.92 3.24	Con		Np complex	Pu complex	Am hex. 3.64 ABAC	Cm	n B	k (:f -	Es —	Fn —	n M	ld N	lo L	

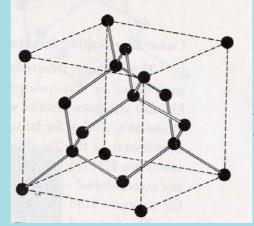
Some examples of crystal structures and lattices with basis

1. Diamond structure

fcc lattice

$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_2 = \frac{1}{4}(\vec{i} + \vec{j} + \vec{k})$$



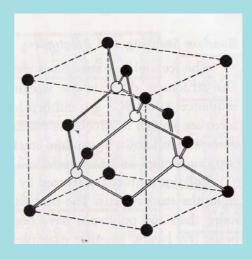
Diamond, Si, Ge

2. Zincblende structure

fcc lattice

$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_2 = \frac{1}{4}(\vec{i} + \vec{j} + \vec{k})$$



ZnS, GaAs SiC, ZnS

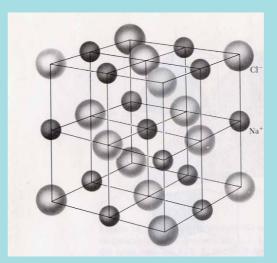
3. Sodium chloride structure

fcc lattice

$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_2 = \frac{a}{2}\vec{i}$$



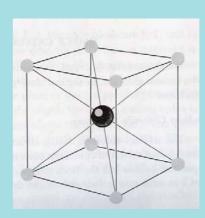
NaCl, LiH, MnO, KCl, KBr

4. Cesium chloride structure

sc lattice

$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_2 = \frac{a}{2}(\vec{i} + \vec{j} + \vec{k})$$



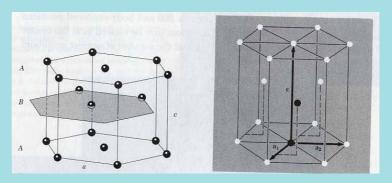
CsCl, AgMg, AlNi, CuPd

5. Hexagonal closed-packed structure (hcp)

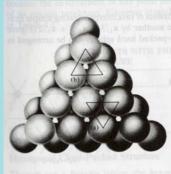
hex lattice

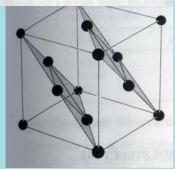
$$\vec{\tau}_1 = 0$$

$$\vec{\tau}_2 = \frac{2}{3}\vec{a}_1 + \frac{1}{3}\vec{a}_2 + \frac{1}{2}\vec{a}_3$$

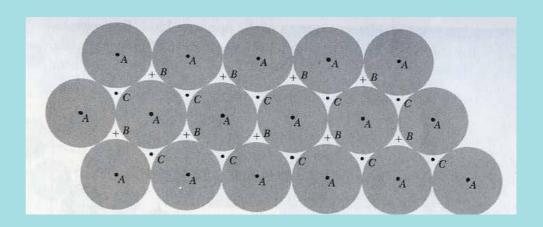


 $c \cong 1.633a$





fcc along (111) direction



hcp: ABABABAB.....

fcc: ABCABCABC....

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

$$\vec{a}_1, \vec{a}_2, \vec{a}_3 : primitive \quad vectors$$

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij}$$

$$\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$$

$$\vec{b}_1, \vec{b}_2, \vec{b}_3 : reciprocal \quad lattice \quad vectors$$

$$e^{i\vec{G}\cdot(\vec{r}+\vec{R})} = e^{i\vec{G}\cdot\vec{r}}$$

\(\therefore\) \(\vec{G}\cdot\) \(\vec{R} = 2\pi(n_1h + n_2k + n_3l)

The set of all wave vector G that yield plane waves with the periodicity of a given Bravais lattice is known as its reciprocal lattice.

The reciprocal lattice vectors is given by:

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \quad ; \quad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \quad ; \quad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$

First Brillouin zone (1BZ): the Wigner-Seitz primitive cell of the reciprocal lattice

Some examples of reciprocal lattice and First Brillouin zone

1. Simple cubic lattice (sc)

$$\vec{a}_1 = a\hat{i}$$

$$\vec{b}_1 = \frac{2\pi}{a}\hat{i}$$

$$\vec{a}_2 = a\hat{j}$$

$$\vec{b}_2 = \frac{2\pi}{a}\hat{j}$$

$$\vec{a}_3 = a\hat{k}$$

$$\vec{b}_3 = \frac{2\pi}{a}\hat{k}$$

The reciprocal lattice of a sc lattice is a sc lattice of side $\frac{2\pi}{\pi}$

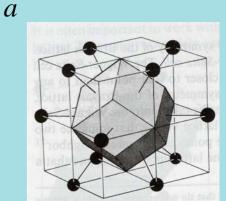
2. Body center cubic lattice (bcc)

$$\vec{a}_{1} = \frac{a}{2} \left(-\vec{i} + \vec{j} + \vec{k} \right) \qquad \vec{b}_{1} = \frac{4\pi}{a} \frac{1}{2} \left(\vec{j} + \vec{k} \right)$$

$$\vec{a}_{2} = \frac{a}{2} \left(\vec{i} - \vec{j} + \vec{k} \right) \qquad \vec{b}_{2} = \frac{4\pi}{a} \frac{1}{2} \left(\vec{i} + \vec{k} \right)$$

$$\vec{a}_{3} = \frac{a}{2} \left(\vec{i} + \vec{j} - \vec{k} \right) \qquad \vec{b}_{3} = \frac{4\pi}{a} \frac{1}{2} \left(\vec{i} + \vec{j} \right)$$

The reciprocal lattice of a bcc lattice is a fcc lattice of side



1 BZ of a bcc lattice

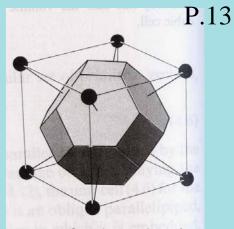
 \boldsymbol{a}

3. Face centered cubic lattice (fcc)

$$\vec{a}_1 = \frac{a}{2} \left(\vec{j} + \vec{k} \right) \qquad \qquad \vec{b}_1 = \frac{4\pi}{a} \left(-\vec{i} + \vec{j} + \vec{k} \right)$$

$$\vec{a}_2 = \frac{a}{2} \left(\vec{i} + \vec{k} \right) \qquad \qquad \vec{b}_2 = \frac{4\pi}{a} \left(\vec{i} - \vec{j} + \vec{k} \right)$$

$$\vec{a}_3 = \frac{a}{2} \left(\vec{i} + \vec{j} \right) \qquad \qquad \vec{b}_3 = \frac{4\pi}{a} \left(\vec{i} + \vec{j} - \vec{k} \right)$$



1 BZ of a bcc lattice

The reciprocal lattice of a fcc lattice is a bcc lattice of side $\frac{4\pi}{a}$

4. Hexagonal lattice (hex)

$$\vec{a}_1 = a \left(\frac{1}{2} \vec{i} + \frac{\sqrt{3}}{2} \vec{j} \right)$$

$$\vec{a}_2 = a \left(\frac{1}{2} \vec{i} - \frac{\sqrt{3}}{2} \vec{j} \right)$$

$$\vec{a}_3 = c \vec{k}$$

Homework: $\vec{b}_1, \vec{b}_2, \vec{b}_3 = ?$