
Quantum computing - a brief review
from algorithms to platforms

Kuei-Lin Chiu
Department of Physics

Massachusetts Institute of Technology

Key Lab of Quantum Information, University of Science and

Technology of China (current position)

2017/12/15 NCTU, Taiwan

Outline

• Introduction to quantum computing

• The Algorithms
 Deutsch-Jozsa algorithm (judging)
 Grover’s algorithm (searching)
 Shor’s algorithm (factoring) Shor’s algorithm (factoring)

• The platforms
 Superconducting circuits
 Semiconductor quantum dots

• Progress and prospect

What is quantum computing?
• Quantum computing uses the properties of quantum mechanics to

design hardware and algorithms, and to perform certain
calculations which are usually difficult for classical computers to
complete

• The unit of quantum computing is quantum bits (“qubits”), in
comparison with the “bits” used in classical computing

Classical Computation

Data unit: bit

Quantum Computation

Data unit: qubitData unit: bit

x = 0 x = 1

0

1

0

1

Valid states:
x = ‘0’ or ‘1’ | = c1|0 + c2|1

Data unit: qubit

Valid states:

| = |0 | = |1 | = (|0 + |1)/√2

=|1 =|0= ‘1’ = ‘0’

When we measure a quantum state, it can be quite different

Classical Computation

Measurement: deterministic

x = ‘0’

State Result of measurement

‘0’

x = ‘1’ ‘1’

Quantum Computation

Measurement: stochastic

| = |0

| = |0- |1

State Result of measurement

| = |1

2

‘0’

‘1’

‘0’ 50%

‘1’ 50%

Single qubit Two qubits|0,|1 |00,|01,|10,|11

1
0
0
0

u11u12
u21u22

Single qubit

c1
c2

c1
c2

Two qubits

H2 =
1

0

0

1,

|0,|1

H2
2 = H2H2 = ,

|00,|01,|10,|11

0
1
0
0

,

0
0
1
0

,

0
0
0
1

c1
c2
c3
c4

c1
c2
c3
c4

u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

Hilbert
space

U| = U| =Operator

| = c1|0 + c2|1 = |
c1|00 + c2|01 +
c3|10 + c4|11

==
Arbitrary
state

Operation of qubits is through quantum gates

one-qubit gate

Hadamard gate (rotate state
around y by π/2)

two-qubit gate

|A>

|B>

|A>⊕|B>

|B>

Controlled-NOT gate

target

control

Pauli-X gate (rotate state around x by π)

Pauli-Z gate (rotate state around z by π)

Input Output

Arbitrary quantum logic gate can be decomposed into one-qubit and two qubit gates

1 0 10

1 1 1 1|x> |-x>

Quantum algorithm
• The difference between polynomial-time and

exponential-time algorithm

n=10 n=20 n=30 n=40 n=50 n=60

n 10-5s 2x10-5s 3x10-5s 4x10-5s 5x10-5s 6x10-5s

If the dimension of a question is n, and the steps (or said the
time) required to solve this question is T(n), which can be
polynomial or exponential function of n

n 10 s 2x10 s 3x10 s 4x10 s 5x10 s 6x10 s

n2 10-4s 4x10-4s 9x10-4s 16x10-4s 25x10-4s 36x10-4s

n3 10-3s 8x10-3s 27x10-3s 64x10-3s 1.25x10-1s 2.16x10-1s

2n 1024*10-6s
~10-3s

~1s ~1000s 12.7 days 35.7 years
366

centuries

3n 5.9 x10-2s 58 mins 6.5 years
3855

centuries
2x108

centuries
1.3x1013

centuries

Grow slowly

Grow insanely
fast

*The age of earth is roughly 4.5*107 centuries

In math, if the complexity of a problem grow exponentially with its input
dimension, we refer this problem to NP (non-deterministic polynomial)

Deutsch-Jozsa Algorithm

• Used to determine whether a function is “constant”
or “balanced”

• For n-bit input x={0,1}n (meaning (0 or 1, 0 or 1…,0 or
1), in total 2n possible combinations):

 f(x)=0 (or 1) for all x, it is called “constant”

 f(x)=0 for half of x and f(x)=1 for the other half, it is  f(x)=0 for half of x and f(x)=1 for the other half, it is
called “balanced”

• In classical algorithm it takes T(2n) steps to verify
while in D-J algorithm it only takes T(n)

A simplified example for classical algorithm: if x=1,2,3…,8 (i.e. n=3); you need
to try f(1), f(2)…each by each. Let’s say you tried the first half input and found
f(1)=f(2)=f(3)=f(4)=0; then you need to try the 5th input; if f(5)=0 then f(x) is
“constant”, however if f(5)=1 then f(x) is “balanced”. So the maximal times of
tries is 5 if you are unlucky. In general, for a n-bit input, you need to try
(2n/2)+1 times.

A simplified example of D-J Algorithm

• For a 1-bit (x=0, 1) input: if f(0)=f(1), f(x) is constant; if f(0)≠f(1), f(x) is balanced. In
classical algorithm, you need to try 2 times to find out.

• See how quantum algorithm works differently. If we define an “Oracle” (applying
on a 2-qubit state, however the 2nd qubit is an ancilla and will be disregarded in
the end) Uf : |x>|y> →|x>|y⊕f(x)> and let the input |y> be a superposition state
(|0>－|1>):

Uf: |x>(|0>－|1>) → |x>(|0⊕f(x)>－|1⊕f(x)>)= (-1)f(x) |x>(|0>－|1>)

The effect of Oracle is simply adding a phase factor related with f(x)

• Let |x>=|0>+|1>, and operate Oracle U : (|0>+|1>)(|0>－|1>) → [(-1)f(0) |0> +(-

if f(x)=0 →|x> (|0>-|1>) ; if f(x)=1 → |x> (|1>-|0>)

• Let |x>=|0>+|1>, and operate Oracle Uf: (|0>+|1>)(|0>－|1>) → [(-1)f(0) |0> +(-
1)f(1) |1>](|0>－|1>)

• Now project the first qubit onto the basis of |±>=(|0>±|1>):

If we get |+>, meaning f(0)=f(1)=0 (or 1), the function is constant

If we get |->, meaning f(0)=0, f(1)=1, the function is balanced

First qubit

We only need to perform Oracle 1 time to determine the function
D-J algorithm is not useful in practical application (i.e., for 2-qubit case, if f(00)=0,
f(01)=f(10)=f(11)=1, then f(x) is neither constant nor balanced). However, it serves as a
good example to see how quantum algorithm operates differently than classical one

Grover's Search Algorithm
• Imagine we are looking for the solution to a problem

with N possible inputs. We have a black box (or
“oracle”) that can check whether a given answer is
correct.

Classical computer Quantum computer

Question: I’m thinking of a number between 1 and 100. What is it?

Have to dig this out

1 Oracle No

...

2 Oracle No

3 Oracle Yes

Oracle1+2+3+... No+No+Yes+No+...

Using Grover’s algorithm, a quantum computer can
find the answer in N queries!

Superposition over all N possible inputs.

Have to dig this out

A simple example (search 1 out of 4)

• For a 2-qubit input, we have |00>, |01>, |10>, |11>. Let’s say |10> is the
answer, so f(00)=f(01)=f(11)=0 but f(10)=1.

• H-gate prepare |0> → 1/√2(|0>+|1>) and |1> → 1/√2(|0>-|1>) , so the

H

H

H

H

H

H H H

H

Of

σx

σx σx

σx|0>

|0>

|1>

Input
qubits
|00>

ancilla
D

• H-gate prepare |0> → 1/√2(|0>+|1>) and |1> → 1/√2(|0>-|1>) , so the
total wavefunction before the oracle is

•

• Then the whole wavefunction goes through oracle, because of the (-1)f(x)

phase, there will be a minus sign in front of the answer state:

input ancilla

When you measure the four basis, they still give you same probability. So the key is to
transform the phase difference in |10> into an amplitude difference for us to measure

This can be simply done by a matrix D composed of
different quantum gates

Apply on wave
function

|00>

|01>

|10> ….the answer

|11>

Hadamard gate
target

Hadamard gate

Pauli-X gate

target

control

In classical search:

In Grover’s search, the average times of queries is N

|X0>: answer state
|Ψ>: initial state
|S>: the H|00> state
(|Ψ>= |S> in our case)
1→2→3: a Grover’s
iteration rotates |Ψ> by
2θ (1 -> oracle, 2&3 ->
matrix D), θ~1/N

1

2

3

Shor’s algorithm

• Integer factorization is a NP, and forms the basis of RSA
cryptosystem (Given N=pq, find p and q).

• 1. Pick up an integer a (said 2), 1<a<N. Define a function
f(x)=ax mod N

• 2. Find the periodicity r of f(x) (2x mod 21 is 1,2,4,8,16,11,1,2..;

To factor an odd integer N
(let’s say 21)

• 2. Find the periodicity r of f(x) (2x mod 21 is 1,2,4,8,16,11,1,2..;
so r for 2x is 6)

• 3. If r is odd, go back to step1 and choose another a. If not,
compute f(r/2) (f(3)=8)

• 4. gcd(ar/2 + 1, N) and gcd(ar/2 - 1, N) are both nontrivial
factors of N. We are done. (gcd of 9 and 21 is 3, gcd of 7 and
21 is 7; 3 and 7 are the prime factors of 21)

Only step 2 is performed by quantum computing,
the rest of the steps are still classical

• The quantum part of Shor algorithm is a bit complicated.
However, let’s get a feeling on how to search period in a given
function using quantum algorithm

• F(x)= ½(cos(πx)+1), x could be the states span by 3 qubits
(x=|0>,|1>,..,|7>). When x is even, f(x)=1; when x is odd,
f(x)=0. The period of f(x) is 2. Our mission is to confirm that

0 01 1

Consider
two
registers

(n=3)

• Measure the second register, ex: if we get |0>, then the
wavefunction collapses to |ϕ>=½(|1>+|3>+|5>+|7>)|0>

• Using the quantum Fourier transform(QFT), we expand the
function:

Where QM plays a role: Cancel out

Only |0> and |4>
survive

QFT

X=1

X=3

X=5

X=7

We have equal probability to measure |0>
or |4>. If we get 0> we can’t find the
period, but if we get |4>, we can.

Compare with the strictly derived final state
after QFT (which we skip), 4=k(=1)N(=8)/r, r=2
(done)

The power of Shor’s algorithm is to utilize the superposition
property of QM, which makes the “unnecessary” information
interfere destructively and the “useful” information interfere

constructively in FT

Classical algorithm takes
time O(exp(n1/3))

Shor’s quantum algorithm
takes time O(n2logn)

Source: New Enterprise Associates

Factoring an integer with n-bits

Superconducting qubit
• A quantum LC resonator using Josephson junction as an

inductor provide anharmonic states for a two-level system

,
,

Quantized electrical harmonic oscillator

q → capacitor charge (momentum p)
φ → inductor flux/phase (position x)

Capacitive energy inductive energy

Josephson junction

Current: I = IC sin φ
Voltage: V= (Φ0/2π)(dφ/dt)
Inductance: V=LJ dI/dt

Transmon qubit

x

Rotate θ about x-axis
Rotate θ about z-axis

Single qubit gate operation with state-dependent
cavity readout

Capacitor (Cs)

JJ

Cg1

PhysRevLett.115.127001 (2015)

Relaxation and decoherence time
T1

T2*

x

Decoherence time/ gate operation time= 1 μs/ 15 ns
PhysRevLett.115.127001 (2015)

Quantum dot qubits

Single quantum dots Double quantum dots

Q
P

C

Two-level system

Rabi oscillation

AC B-field

Drawback: large static B-field is required
RevModPhys.79.1217

2 qubits CNOT gate in Si QDs

Control qubitTarget qubit

Microwave

10.1126/science.aao5965

Control qubitTarget qubit

Progress and prospect

IBM 20 (2017)
Gate operation time ~ ns

Expect to be very long!

Gate operation time ~ 100 ms

Gate operation time ~ 100 ns

http://www.sciencemag.org/news/2016/12/scientists-are-close-building-
quantum-computer-can-beat-conventional-one

Thank you for your
attention!

