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Quantum Channel

I Quantum Channel: A quantum channel (QC) (CPTP) map
E : L(HA)→ L(HB),

ρ′ = E
(
ρ
)

=
n∑

j=1

KjρK
†
j

where Ki satisfies
∑

j K
†
j Kj = I.

In Heisenberg picture, the corresponding description is given in terms of
dual channel E∗ acting on operators

Tr [E(ρ)A] = Tr [ρE∗(A)]; ∀ρ,A (1)

zz
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Quantum Channel

Nonlocality and Incompatibility: The Bell operator associated with the
CHSH inequality has the form

B = A1 ⊗ (B1 + B2) + A2 ⊗ (B1 − B2),

Then the Bell-CHSH inequality, for any state ρ is

Tr [ρB(A1,A2,B1,B2)] ≤ 2. (2)

The violation of above inequality (2) is sufficient to justify the non-locality of
quantum state. However incompatible observables acting on entangled
particles enable the nonlocality. Thus, incompatibility is the necessary to lead
the violation of CHSH inequality.

M. Wolf et.al., PRL, 103, 230402 (2009).
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Nonlocality Breaking Channel

Definition

Any channel E : L(H)→ L(H) is said to be NBC if applying on one side of
(arbitrary) bipartite state ρAB , it produces a state ρ′AB = (E ⊗ I)(ρAB) which
satisfies the Bell-CHSH inequality (2).

A unital channel is particularly important as it breaks the non-locality for any
state, when it breaks for maximally entangled states.

R. Pal and S. Ghosh, J. Phys. A, 48, 155302 (2015).
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Incompatibility Breaking Channel

Definition

Any channel E : L(H)→ L(H) is said to be IBC if after mapping E(A) is
compatible, for incompatible subset A of given observables.

If a channel E breaks the incompatibility of every class of n observables, it is
said to be n − IBC, 2− IBC’s is the channel which breaks the
incompatibility for pairs.

T. Heinosaari et.al., J. Phys. A, 48, 435301 (2015).
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CHSH nonlocality and Incompatibility Breaking Channel

Theorem

If (E ⊗ I) is 2-IBC , then (E∗ ⊗ I) is CHSH non-locality breaking.

Proof.

Let (E ⊗ I) be 2-IBC , then by the application of channel on Alice side
incompatible measurements, say A1 and A2 becomes compatible, if the
measurement on Bob side is B1 and B2, then we can write

Tr [ρB
(
E(A1), E(A2),B1,B2

)
] ≤ 2; ∀ρ,A1,A2,B1,B2

⇒ Tr [ρE(A1)⊗ B1] + Tr [ρE(A2)⊗ B1]

+Tr [ρE(A1)⊗ B2]− Tr [ρE(A2)⊗ B2] ≤ 2

⇒ Tr [E∗(ρ)A1 ⊗ B1] + Tr [E∗(ρ)A2 ⊗ B1]

+Tr [E∗(ρ)A1 ⊗ B2]− Tr [E∗(ρ)A2 ⊗ B2] ≤ 2

⇒ (E∗ ⊗ I) is CHSH non-locality breaking.
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CHSH nonlocality and Incompatibility Breaking Channel

Theorem

If (E ⊗ I) is CHSH non-locality breaking, then (E∗ ⊗ I) is 2-IBC, provided the
channel is unital.

Proof.

Let (E ⊗ I) be CHSH non-locality breaking, then

Tr [E(ρ)B(A1,A2,B1,B2)] ≤ 2; ∀ρ,A1,A2,B1,B2

⇒ Tr [ρE∗(A1)⊗ B1] + Tr [ρE∗(A1)⊗ B2]

+Tr [ρE∗(A2)⊗ B1]− Tr [ρE∗(A2)⊗ B2] ≤ 2

⇒ E∗(A1) and E∗(A2) is compatible Hence, E∗ is 2-IBC , where E∗ is unital,
i.e., E∗(I) = I.
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Nonlocality breaking channel in tripartite scenario

The Svetlichny inequality and the maximal violation The violation of
Svetlitchny inequality shows the genuine tripatite non-locality, hereby, we
consider the Svetlichly operator S is given by,

S = A⊗
[
(B + B ′)⊗ C + (B − B ′)⊗ C ′

]
+ A′ ⊗

[
(B − B ′)⊗ C − (B + B ′)⊗ C ′

]
where A,A′,B,B ′,C ,C ′ are observables of the form G = ~g .~σ =

∑
k gkσk ,

G ∈
(
A,A′,B,B ′,C ,C ′

)
and
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Nonlocality breaking channel in tripartite scenario

g ∈
(
~a, ~a′, ~b, ~b′, ~c, ~c ′

)
,σk(k = 1, 2, 3) are the Pauli matrices,

~σ = (σ1, σ2, σ3), ~g = (g1, g2, g3) is a three dimensional real unit vectors.

For any three qubit state |ψ〉, admitting bi-LHV model, the mean value of
the Svelitchny operator is bounded as,

|〈ψ|S |ψ〉| ≤ 4 (3)

Definition:3 For any three qubit quantum state ρ, the maximum quantum
value 〈S〉ρ of the Svetlichny operator S is bounded as

|〈S〉|ρ ≤ 4λ1 (4)

where 〈S〉ρ = Tr [Sρ] and λ1 is the maximum singular value of the matrix
M = (Mj ,ik), with M = (Mijk = Tr [ρ(σi ⊗ σj ⊗ σk)], i , j , k = 1, 2, 3.

M. Li et.al., PRA 96, 042323 (2017).
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Violation of Svetlichny inequality

Conditions of violation of Svetlichny inequality

Example 1. The generalized GHZ state |ψ〉 = α|000〉+ β|111〉, where α and
β are real with α2 + β2 = 1; can be stated in the form of Pauli matrices

ρg =
1

8
[I ⊗ I ⊗ I + I ⊗ σ3 ⊗ σ3 + σ3 ⊗ I ⊗ σ3 + σ3 ⊗ σ3 ⊗ I

+ (α2 − β2)(σ3 ⊗ I ⊗ I + I ⊗ σ3 ⊗ I + I ⊗ I ⊗ σ3
+ σ3 ⊗ σ3 ⊗ σ3) + αβ(σ1 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ2 ⊗ σ2
− σ2 ⊗ σ1 ⊗ σ2 − σ2 ⊗ σ2 ⊗ σ1)]
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Violation of Svetlichny inequality

From Def(3), we can obtain the matrix M1 is given by

M1 =

2αβ 0 0 −2αβ 0 0 0 0 0
0 −2αβ 0 0 −2αβ 0 0 0 0
0 0 0 0 0 0 0 0 α2 − β2


with two equal singular values λ1 = 2αβ

√
2, λ2 = 2αβ

√
2 and λ3 = α2 − β2

respectively. The maximum of Svelitchny operator for the GGHZ state is
given by

〈S〉ρg = 8
√

2αβ

Thus the violation of Svetlinchy’s inequality for GGHZ state is valid for

αβ >
1

2
√

2
(5)

The maximum violation (4
√

2) is obtained for GHZ state (α = β = 1/
√

2) .
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Violation of Svetlichny inequality

Example 2. The Maximally Slice state |ψ〉 = 1/
√

2|000〉+ |11(α|0〉+ β|1〉),
where α and β are real with α2 + β2 = 1; can be stated in the form of Pauli
matrices

ρs =
1

8

[
I ⊗ I ⊗ I +

(1 + α2 − β2)

2
I ⊗ I ⊗ σ3

+
(1− α2 + β2)

2
I ⊗ σ3 ⊗ σ3 +

(1− α2 + β2)

2
σ3 ⊗ I ⊗ σ3

+ σ3 ⊗ σ3 ⊗ I +
(1 + α2 − β2)

2
σ3 ⊗ σ3 ⊗ σ3

+ α(σ1 ⊗ σ1 ⊗ I + σ1 ⊗ σ1 ⊗ σ3 − σ2 ⊗ σ2 ⊗ I

− σ2 ⊗ σ2 ⊗ σ3) + β(σ1 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ2 ⊗ σ2
− σ2 ⊗ σ1 ⊗ σ2 − σ2 ⊗ σ2 ⊗ σ1) + αβ(I ⊗ I ⊗ σ1
− I ⊗ σ3 ⊗ σ1 − σ3 ⊗ I ⊗ σ1 + σ3 ⊗ σ3 ⊗ σ1)

]
13 of 23



Violation of Svetlichny inequality

From Def(3), we can obtain the matrix M2 is given by

M2 =

β 0 α 0 −β 0 0 0 0
0 −β 0 −β 0 −α 0 0 0

0 0 0 0 0 0 αβ 0 1+α2−β2

2


with λ1 =

√
1
4 (α2 − β2 + 1)2 + (αβ)2 and two equal singular values

λ2 = λ3 =
√

(α2 + 2β2) respectively.

〈S〉ρs = 4
√

(α2 + 2β2)

Thus the violation of Svetlinchy’s inequality for maximally sliced state is valid
for √

(α2 + 2β2) > 1 (6)
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Violation of Svetlichny inequality

We get the maximum violation of Svetlinchy’s inequality for maximally sliced
state (α = 0 and β = 1) to be 4

√
2. Note that for the values of α = 0 and

β = 1, maximally sliced state reduces to the GHZ state.

Example 3. Consider the quantum state given by

σA(ρ) = p|GHZ 〉〈GHZ |+ (1− p)I2 ⊗ Ī

0 ≤ p ≤ 1; I2 stands for 2× 2 identity matrix and Ī = diag(1, 0, 0, 1).
From Def(3), matrix M3 is given by

M3 =

p 0 0 0 −p 0 0 0 0
0 −p 0 −p 0 0 0 0 0
0 0 0 0 0 0 0 0 0


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Nonlocality breaking condition

Maximum quantum value of the state can be obtained as 〈S〉σA = 4
√

2p.

NONLOCALITY BREAKING CONDITION: For any three qubit state
ρABC , given channel E is said to be genuine non-locality breaking if acting on
qubit it gives a state ρ′ABC = (E ⊗ I ⊗ I )(ρABC ), which satisfies the
Svetlichny inequality, 〈S〉ρ′ABC ≤ 4.

Similarly, the nonlocality breaking condition can be obtained as,

Generalised GHZ state, η ≤ 1
2
√
2αβ

,

Maximally slice state, η ≤ 1√
α2+2β2

and

General mixed state, η ≤ 1√
2p

respectively.
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NBC and IBC
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Bilocality scenario

No-Signaling and Independence(NSI): Branciard et.al., PRL,2010.

Independent locality(bilocality):P(λ1, λ2) = P(λ1).P(λ2)

P(ABC |xyz) =

∫
dλ1dλ2q(λ1)q(λ2)P(A|x , λ1)P(B|y , λ1, λ2)P(C |z , λ2)

√
|I |+

√
|J| < 2

where, I = (A0 + A1)B0(C0 + C1); J = (A0− A1)B0(C0− C1).
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Bilocality scenario

If ρ violates CHSH then ρ⊗ ρ violates bilocality inequality.

(ρ→ all pure entangled state).

N. Gisin, PRA,96,020304(R) (2017).

Hence, 2-IBC ⇔ non-bilocality breaking. ((EA ⊗ I) and (I⊗ EC ) are CHSH
non-locality breaking then (E∗A ⊗ I) and (I⊗ E∗C ) are 2-IBC and vice versa.)
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Non-bilocality and Incompatibility Breaking Channel

Definition

A channel (EA ⊗ I⊗ I⊗ Ec) is said to be non-bilocality breaking if after
application of the channel ρ′ ⊗ ρ′ satifies the bilocality inequality.

Theorem

If (EA ⊗ I⊗ I⊗ Ec) is non-bilocality breaking then (E∗A ⊗ I) and (I⊗ E∗A) are
2-IBC.

Theorem

If (EA ⊗ I) and (I⊗ EA) are 2-IBC, then (E∗A ⊗ I⊗ I⊗ E∗c ) is non-bilocality
breaking.

Hence, non-bilocality breaking channels are 2-IBC.
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n-star shaped network scenario

Here, we can also show that n-2-IBC are equivalent to non-n-locality
breaking channel.
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Conclusion

I We show an equivalency relation between CHSH nonlocality and
incompatibility breaking channel.

I We extend this study in tripartite scenario using Svetchlichny inequality
studied in some well known states.

I We found that, within certain range of channel and state parameter
incompatibility assures nonlocality for generalized GHZ and maximally
slice state.
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