On learning quantum states and measurements

（Quantum Information and Computation，16（7\＆8）：0615－0656，2016，arXiv：1501．00559）

Hao－Chung Cheng（鄭皓中）
haochung＠ntu．edu．tw

Department of Electrical Engineering National Taiwan University

How to learn a quantum device?

- Suppose that you have manufactured a quantum device, e.g. a quantum system, circuit, or measurement apparatus. How do you know that it works as expected?

Problem Formulation - Learning Quantum States

- Given: Many copies of an unknown quantum state $\rho \in \mathcal{S}\left(\mathbb{C}^{d}\right), d=2^{n}$

$$
\mathcal{S}\left(\mathbb{C}^{d}\right):=\left\{\rho \in \mathbb{C}^{d \times d}: \rho \geq 0, \operatorname{Tr}[\rho]=1\right\}
$$

- Goal: To propose a hypothesis state $\hat{\rho} \approx \rho$.
- Question:
- Sample complexity: How many copies of ρ are necessary and sufficient to produce the hypothesis state $\hat{\rho}$?
- Time complexity: How long it takes to find such a state $\hat{\rho}$?

Quantum State Tomography

- A standard way - Quantum state tomography
\rightarrow Haah et al. (2017): $\widetilde{O}\left(d^{2} / \epsilon^{2}\right)$ copies are necessary and sufficient such that $\|\hat{\rho}-\rho\|_{1} \leq \epsilon$.
\rightarrow A general mixed d-dimensional state contains $d^{2}-1$ parameters!
- Sometimes, full tomography on an arbitrary state is overkill.
- States with certain structures: (1) r-rank $\rho: \tilde{O}\left(d r / \epsilon^{2}\right)$.
(2) stabilizer states and beyond.
- To produce the state $\hat{\rho}$ that is Probably and Approximately Correct (PAC).

[^0]
The PAC Learning Model

- To learn an unknown target quantum state $\rho \in \mathcal{S}\left(\mathbb{C}^{d}\right)$:

$$
E_{i} \in \mathbb{C}^{d \times d}, 0 \leq E_{i} \leq I
$$

Randomly (i.i.d.) draw a set of two-outcome measurements E_{1}, \ldots, E_{m} \rightarrow Training set: $\left\{\left(E_{1}, \operatorname{Tr}\left[\rho E_{1}\right]\right), \ldots,\left(E_{m}, \operatorname{Tr}\left[\rho E_{m}\right]\right)\right\}$, where $E_{i} \sim \mu$.
\rightarrow To pick a hypothesis state $\hat{\rho}$ such that

Born's Rule

$$
\underset{\mu}{\operatorname{Pr}\{|\operatorname{Tr}[\hat{\rho} E]-\operatorname{Tr}[\rho E]| \leq \epsilon\} \geq 1-\delta}
$$

- Given $0<\epsilon, \delta<1$, the sample complexity $m_{\mathcal{S}\left(\mathbb{C}^{d}\right)}(\epsilon, \delta)$ is the least integer of m such that the above is satisfied.

Learnability of Quantum States [Aar07]

- To learn an unknown n-qubit quantum state:

$$
m_{\delta\left(\mathbb{C}^{2}\right)^{n}}(\epsilon, \delta)=\Theta\left(n / \epsilon^{2}\right)
$$

Full tomography: $O\left(4^{n} / \epsilon^{2}\right)$

Empirical Risk Minimizer

- Protocol: take $m=O\left(n / \epsilon^{2}\right)$ many samples of training data and find $\hat{\rho}$ that has minimum training error $\frac{1}{m} \sum_{i=1}^{m}\left|\operatorname{Tr}\left[\hat{\rho} E_{i}\right]-\operatorname{Tr}\left[\rho E_{i}\right]\right|$.
- Quantum states are PAC-learnable, i.e. sample-efficient, but not time-efficient!
- Technique: An entropic inequality in Quantum Random Access Codes.

[^1]
Quantum Random Access Codes

- Random access code
- Alice encodes n bits into m (classical or quantum) bits and send them to Bob ($n>m$)
- Bob restores any of the n bits with probability greater than p
- \nexists classical $2 \stackrel{p}{\mapsto} 1$ with $p>0.5$
\exists quantum $2 \stackrel{p}{\mapsto} 1$ with $p=\cos ^{2}(\pi / 8) \approx 0.85$
- Theorem (Ambainis et al.). Let $\frac{1}{2}<p \leq 1$. Any quantum (and hence any classical) $m \stackrel{p}{\mapsto} n$ encoding satisfies $n \geq(1-H(p)) m$.

Why learning quantum states is sample-efficient?

Are quantum measurements PAC learnable?

Learning Quantum States vs. Measurements

- To learn an unknown target quantum state $\rho \in \mathcal{S}\left(\mathbb{C}^{d}\right)$:

$$
E_{i} \in \mathbb{C}^{d \times d}, 0 \leq E_{i} \leq I
$$

Randomly (i.i.d.) draw a set of two-outcome measurements E_{1}, \ldots, E_{m} \rightarrow Training set: $\left\{\left(E_{1}, \operatorname{Tr}\left[\rho E_{1}\right]\right), \ldots,\left(E_{m}, \operatorname{Tr}\left[\rho E_{m}\right]\right)\right\}$.
\rightarrow To pick a hypothesis state $\hat{\rho}$ such that $\operatorname{Tr}[\hat{\rho} E] \approx \operatorname{Tr}[\rho E]$.

- To learn an unknown two-outcome quantum measurement $E \in \mathcal{E}\left(\mathbb{C}^{d}\right)$: Randomly (i.i.d.) draw a set of states $\rho_{1}, \ldots, \rho_{m}$
\rightarrow Training set: $\left\{\left(\rho_{1}, \operatorname{Tr}\left[\rho_{1} E\right]\right), \ldots,\left(\rho_{m}, \operatorname{Tr}\left[\rho_{m} E\right]\right)\right\}$.
\rightarrow To pick a hypothesis operator \hat{E} such that $\operatorname{Tr}[\rho \hat{E}] \approx \operatorname{Tr}[\rho E]$.

Statistical Learning Framework

Different Output Space

- binary classification: $\mathcal{Y}=\{-1,+1\}$
- multiclass classification: $\mathcal{Y}=\{1,2, \cdots, K\}$
- regression:
$\mathcal{Y}=\mathbb{R}$
- unsupervised:
$\mathcal{Y}=\emptyset$

Vapnik-Chervonenkis Dimension

Definition. Let \mathcal{F} be a set of $\{0,1\}$-valued functions on a domain \mathcal{X}. We say that \mathcal{F} shatters a set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$ if for every subset $B \subseteq\{1, \ldots, n\}$ there exists a function $f_{B} \in \mathcal{F}$ for which $f_{B}\left(x_{i}\right)=1$ if $i \in B$, and $f_{B}\left(x_{i}\right)=0$ if $i \notin B$. Let

$$
\mathrm{VCdim}(\mathcal{F})=\sup \{|\mathcal{S}|: \mathcal{S} \subseteq \mathcal{X}, \mathcal{S} \text { is shattered by } \mathcal{F}\}
$$

$$
m_{\mathcal{F}}(\epsilon, \delta)=\Theta\left(\frac{\mathrm{VCdim}(\mathcal{F})+\frac{1}{\delta}}{\epsilon}\right)
$$

Fat-Shattering Dimension

Definition. Let \mathcal{F} be a set of real-valued functions on a domain \mathcal{X}. For every $\epsilon>0$, a set $\mathcal{S}=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$ is said to be ϵ-shattered by the \mathcal{F} if there exists a set $\left\{\alpha_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ such that for every $B \subseteq\{1, \ldots, n\}$ there is some function $f_{B} \in \mathcal{F}$ for which $f_{B}\left(x_{i}\right) \geq \alpha_{i}+\epsilon$ if $i \in B$, and $f_{B}\left(x_{i}\right)<\alpha_{i}-\epsilon$ if $i \notin B$. Define the fat-shattering dimension of \mathcal{F} on the domain \mathcal{X} as

$$
\operatorname{fat}_{\mathcal{F}}(\epsilon, \mathcal{X})=\sup \{|\mathcal{S}|: \mathcal{S} \subseteq \mathcal{X}, \mathcal{S} \text { is } \epsilon \text {-shattered by } \mathcal{F}\}
$$

Covering Number

Definition. Let (Y, τ) be a metric space and let $\mathcal{F} \subset Y$. For every $\epsilon>0$, the set $\left\{y_{1}, \ldots, y_{n}\right\}$ is called an ϵ-cover of \mathcal{F} if every $f \in \mathcal{F}$ has some y_{i} such that $\tau\left(f, y_{i}\right)<\epsilon$. The covering number $\mathcal{N}(\epsilon, \mathcal{F}, \tau)$ is the minimum cardinality of a ϵ-covering set for \mathcal{F} with respect to the metric τ.

Rademacher Complexity

Definition. Let μ be a probability measure on \mathcal{X} and \mathcal{F} be a set of uniformly bounded functions on \mathcal{X}. For every positive integer n, define

$$
\mathcal{R}_{n}(\mathcal{F})=\mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{\sqrt{n}}\left|\sum_{i=1}^{n} \gamma_{i} f\left(x_{i}\right)\right|
$$

where $\left\{x_{i}\right\}_{i=1}^{n}$ are independent random variables distributed according to μ and $\left\{\gamma_{i}\right\}_{i=1}^{n}$ independently takes values in $\{-1,+1\}$ with equal probability (which are also independent of $\left.\left\{x_{i}\right\}_{i=1}^{n}\right)$. The quantity $\mathcal{R}_{n}(\mathcal{F})$ is called the Rademacher complexity associated with the class \mathcal{F}.

Proof Roadmap

1. Formulate learning operators into learning real-valued functions.
2. Invoke a bound in Banach space theory that relates the number of samples to the expected norm of the input space.
3. Apply some matrix concentration inequalities to calculate the expected norm so as to obtain an upper bound to the sample complexity.

Take-Home Message -Real-Valued Functions

- Definition (Schatten p-ball). $S_{p}^{d} \triangleq\left\{M \in \mathbb{C}^{d \times d}: M=M^{\dagger},\|M\|_{p} \leq 1\right\}$

$$
\|M\|_{p}:=\left(\operatorname{Tr}\left[|M|^{p}\right]\right)^{1 / p}
$$

- Learning quantum state \leftrightarrow learning linear functionals parameterized by S_{1}^{d} :

$$
\mathcal{F}=\left\{X \mapsto\langle X, W\rangle_{\text {HS }}=\operatorname{Tr}[X W]:\|W\|_{1} \leq 1\right\}, \quad X:\|X\|_{\infty} \leq 1
$$

- Learning measurements \leftrightarrow learning linear functionals parameterized by S_{∞}^{d} :

$$
\mathcal{F}=\left\{X \mapsto\langle X, W\rangle_{\text {HS }}=\operatorname{Tr}[X W]:\|W\|_{\infty} \leq 1\right\}, \quad X:\|X\|_{1} \leq 1
$$

Learning Quantum States and Measurements

Learning Setup	Learning Measurements	Learning States	
Space	Input space	Input space	Output space
$\mathcal{Z}=\mathcal{X} \times \mathcal{Y} \sim \mathcal{D}$	$\mathcal{X}=\mathcal{S}\left(\mathbb{C}^{d}\right) \ni \rho \sim \mathbb{P}_{\mathcal{X}}$	$\mathcal{X}=\mathcal{E}\left(\mathbb{C}^{d}\right) \ni E \sim \mathbb{P}_{\mathcal{X}}$	$\mathcal{Y}=[0,1]$
Target concept	Unknown E	Unknown ρ	
$t: \mathcal{X} \rightarrow \mathcal{Y}$	$\rho \mapsto \operatorname{Tr}[\rho E]$	$E \mapsto \operatorname{Tr}[\rho E]$	
Hypothesis set	$\left\{\rho \mapsto \operatorname{Tr}(E \rho): \forall E \in \mathcal{E}\left(\mathbb{C}^{d}\right)\right\}$	$\left\{E \mapsto \operatorname{Tr}(E \rho): \forall \rho \in \mathcal{S}\left(\mathbb{C}^{d}\right)\right\}$	
$f \in \mathcal{G}: \mathcal{X} \rightarrow \mathbb{R}$	Absolute or Square Error		
Loss function	$\mathbb{\mathcal { F }}: \mathcal{G} \times \mathcal{Z} \rightarrow \mathbb{R}$	$\underset{\mathcal{Z} \sim \mathcal{D}}{ }\left[(g(\rho)-y)^{2}\right]$	
Risk	Fat-shattering dimension, etc.		
$R(g)=\mathbb{E}[f(g, \mathcal{Z})]$			

Key Ingredient: A Banach Space Theory

- Theorem (Mendelson and Schechtman '04)

The set $\mathcal{S}=\left\{x_{1}, \ldots, x_{m}\right\} \subset B_{X}$ is ϵ-shattered by $B_{X^{*}}$ if and only if $\left\{x_{i}\right\}_{i=1}^{m}$ are linearly independent and for every $a_{1}, \ldots, a_{m} \in \mathbb{R}$,

$$
\epsilon \sum_{i=1}^{m}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{m} a_{i} x_{i}\right\|_{X}
$$

where B_{X} is the unit ball of some Banach space \mathcal{X} and $B_{X^{*}}$ is its dual unit ball.

- Denote $\left\{\gamma_{i}\right\}$ as the Rademacher variables (symmetric $-1,1$-valued random variables). By selecting $a_{i}=\gamma_{i}$, we have

$$
\epsilon m \leq\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{X}
$$

Reduction

- Learning quantum states : $\mathcal{X}=S_{\infty}^{d}, \mathcal{F}=\left\{X \mapsto\langle X, W\rangle_{\text {HS }}: W \in S_{1}^{d}\right\}$

$$
\Rightarrow \text { To find } \mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{\infty}
$$

- Learning measurements: $\mathcal{X}=S_{1}^{d}, \mathcal{F}=\left\{X \mapsto\langle X, W\rangle_{\mathrm{HS}}: W \in S_{\infty}^{d}\right\}$

$$
\Rightarrow \text { To find } \mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{1}
$$

Matrix Concentration Inequality

- Theorem (Rademacher Series [Tro12])

Consider a finite sequence $\left\{x_{i}\right\}$ of deterministic Hermitian matrices with dimension d, and let $\left\{\gamma_{i}\right\}$ be independent Rademacher variables. Set $\|\cdot\|_{\infty}$ be the operator norm. Form the matrix Rademacher series

$$
Y=\sum_{i} \gamma_{i} x_{i} .
$$

Compute the variance parameter $\sigma^{2}=\sigma^{2}(Y)=\left\|\mathbb{E}\left(Y^{2}\right)\right\|_{\infty}$. Then

$$
\mathbb{E}\|Y\|_{\infty} \leq \sqrt{2 \sigma^{2} \log d}
$$

Furthermore, for all $t \geq 0$,

$$
\operatorname{Pr}\left\{\|Y\|_{\infty} \geq t\right\} \leq d e^{-t^{2} / w \sigma^{2}}
$$

- $\epsilon m \leq \mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{\infty} \leq \sqrt{2 m \log d}$

$$
\Rightarrow m \leq \frac{2 \log d}{\epsilon^{2}}
$$

Noncommutative Khintchine Inequalities

- Let x_{i} be deterministic $d \times d$ matrices, γ_{i} be independent Rademacher random variables. Then
$\mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{S_{p}} \approx_{p}\left\{\begin{array}{c}\left(\left\|\left(\sum_{i=1}^{m} x_{i} x_{i}^{*}\right)^{1 / 2}\right\|_{S_{p}}^{p}+\left\|\left(\sum_{i=1}^{m} x_{i}^{*} x_{i}\right)^{1 / 2}\right\|_{S_{p}}^{p}\right)^{1 / p} \text { if } 2 \leq p \leq \infty \\ \inf _{x_{i}=a_{i}+b_{i}}\left(\left\|\left(\sum_{i=1}^{m} a_{i} a_{i}^{*}\right)^{1 / 2}\right\|_{S_{p}}^{p}+\left\|\left(\sum_{i=1}^{m} b_{i}^{*} b_{i}\right)^{1 / 2}\right\|_{S_{p}}^{p}\right)^{1 / p} \text { if } 1 \leq p \leq 2\end{array}\right.$
$\Rightarrow \mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{1} \leq\left\|\left(\sum_{i=1}^{m} x_{i}^{2}\right)^{\frac{1}{2}}\right\|_{1}$ for x_{i} being Hermitian matrices.
- $\epsilon m \leq \mathbb{E}\left\|\sum_{i=1}^{m} \gamma_{i} x_{i}\right\|_{1} \leq \sqrt{m d} \quad \Rightarrow m \leq \frac{d}{\epsilon^{2}}$

Our Main Results (1/2)

- Learning quantum state $\rho \in \mathcal{S}\left(\mathbb{C}^{d}\right)$:
\rightarrow Sufficiency: $m_{\mathcal{S}\left(\mathbb{C}^{d}\right)}(\epsilon, \delta) \leq O\left(\log d / \epsilon^{2}\right)$.
- Learning quantum measurement $E \in \mathcal{E}\left(\mathbb{C}^{d}\right)$:
\rightarrow Sufficiency: $m_{\mathcal{E}\left(\mathbb{C}^{d}\right)}(\epsilon, \delta) \leq O\left(d / \epsilon^{2}\right)$.
\rightarrow Necessity: $m_{\mathcal{E}\left(\mathbb{C}^{d}\right)}(\epsilon, \delta) \geq d / \epsilon^{2}$.
(1) \exists examples of d many states that can be shattered by $\mathcal{E}\left(\mathbb{C}^{d}\right)$.
(2) By Kai-Min: Boolean functions are embedded in $\mathcal{E}\left(\mathbb{C}^{d}\right)$.

Our Main Results (2/2)

	Learning Measurements	Learning States
Pseudo-Dimension	d^{2}	$d^{2}-1 \longleftarrow$ Full tomography
Fat-Shattering Dimension	$\frac{d}{\epsilon^{2}}$	$\frac{\log d}{\epsilon^{2}}$
Uniform Entropy Number	$\frac{d}{\epsilon^{2}}$	$\frac{\log d}{\epsilon^{2}}$
Rademacher/Gaussian Complexity	\sqrt{d}	$\frac{\sqrt{\log d}}{}$
Sample Complexity $m_{\mathcal{F}}(\epsilon, \delta)$	$\frac{\max \left\{d, \log \frac{1}{\delta}\right\}}{\epsilon^{2}}$	$\frac{\max \left\{\log d, \log \frac{1}{\delta}\right\}}{\epsilon^{2}} \longleftarrow$

Intuitions

- Schatten ∞-ball is much larger than the Schatten 1-ball .

$$
\frac{\left|\mathcal{E}\left(\mathbb{C}^{d}\right)\right|^{1 / d^{2}}}{\left|\mathcal{S}\left(\mathbb{C}^{d}\right)\right|^{1 /\left(d^{2}-1\right)}} \simeq\left(\frac{\left|S_{\infty}^{d}\right|}{\left|S_{1}^{d}\right|}\right)^{1 / d^{2}} \simeq d
$$

Related Works

Other Learning Models (1/2)

- Adversarial online learning (for states):
- Learning happens in rounds; no more distributions on measurements.
- In each round, adversary sends E_{i}; the learner replies $\operatorname{Tr}\left[\hat{\rho}_{i} E_{i}\right]$.
- If $\left|\operatorname{Tr}\left[\hat{\rho}_{i} E_{i}\right]-\operatorname{Tr}\left[\rho E_{i}\right]\right| \geq \epsilon$, the adversary says 'mistake'; as fewer mistakes as possible.
- Aaronson et al. (2019): $O(\log d)$ mistakes are sufficient.
- Relations between various learning models (for states):
- Arunachalam, Quek, Smolin (2021):

Information-theoretic implications for online learning, differential private PAC learning, etc.
S. Aaronson, X. Chen, E. Hazan, S. Kale, A. Naya, "Online learning of quantum states," J. Stat. Mech. (2019) 124019.
S. Arunachalam, Y. Quek, J. Smolin, "Private learning implies quantum stability," arXiv:2102.07171

Other Learning Models (2/2)

- PAC Learning quantum circuits:
- Chung and Lin (2018): Sample-efficient for finite sets of quantum circuits.
- Caro and Datta (2020): Sample-efficient (pseudo-dimension) for certain classes of circuits.

[^2]
Shadow Tomography

- Instead of learning quantum states on some random measurements, but on a fixed set of measurements.
- Given $\left\{E_{1}, \ldots, E_{k}\right\}$, how many copies of ρ are sufficient to estimate $\operatorname{Tr}\left[\rho E_{1}\right], \ldots, \operatorname{Tr}\left[\rho E_{k}\right]$?
- Aaronson et al. (2018): $\operatorname{poly}(\log k, \log d)$ copies are sufficient (exponentially better).
- Related works: classical shadows
- Huang and Kueng (2019):
$O(k)$ many measurement statistics are sufficient to predict k linear functions of ρ.

Learning States under Certain Structures (1/3)

- Hamiltonian learning:

Given copies of the Gibbs state $\rho_{\vec{\mu}}=\frac{1}{z_{\beta}} \mathrm{e}^{-\beta H}$ and basis $\left\{E_{i}\right\}_{i}$, where $H=\sum_{i} \mu_{i} E_{i}$ is an κ-local Hamiltonian, output an appion of $\vec{\mu}$.
\rightarrow Anshu et al. (2020): $\widetilde{\Theta}\left(\operatorname{poly}\left(\mathrm{e}^{\beta+\kappa}, \beta^{-1}, \epsilon^{-1}, n^{3}\right)\right)$ copies are necessary and sufficient.
\rightarrow Learning a generic Hamiltonian is NOT time-efficient.

Learning States under Certain Structures (2/3)

- So far...
- Full state tomography is not sample-efficient (even for pure states).
- PAC learning measurements is not sample-efficient (but better than full tomography)
- PAC learning, shadow tomography, online learning, and learning Hamiltonian are sample-efficient but time-expensive in general.
- Is it possible to time-efficiently learn certain interesting classes of states?
\rightarrow Yes!
- Exact learning (with high probability producing the hypothesis = target)
- PAC learning

Learning States under Certain Structures (3/3)

- Montanaro (2017): Exact learn stabilizer states via Bell sampling in $O(n)$.
- Low (2009): Sample-efficient for some Clifford hierarchies.
- Rocchetto (2018): Efficiently PAC learn stabilizer states.
- Lai and Cheng (2021): Exact learn the following
- Clifford circuits using $O\left(n^{2}\right)$ queries in time $O\left(n^{3}\right)$.
- Output states of an \boldsymbol{T}-depth one circuit using $O\left(3^{k} n\right)$ queries in time $O\left(n^{3}+3^{k} n\right)$.

[^3]R. Low, "Learning and testing algorithms for the Clifford group," Phys. Rev. A, 80(5) 052314, 2009.
A. Rocchetto, "Stabiliser states are efficiently PAC-learnable," Quantum Information and Computation, 18(7\&8), 2018.

Rocchetto1 et al., "Experimental learning of quantum states," Science Advances, 5(3), 2019.
C.-Y. Lai, H.-C. Cheng, "Learning quantum circuits of some T gates," arXiv:2106.12524.

- An excellent overview talk by Srinivasan Arunachalam (TQC 2021): https://www.youtube.com/VqQTIjS8bDQ?start=32721

Discussions

Open Problems

－Learning global quantum states using only local operations and classical communication（LOCC）．
－Learning separable（i．e．not entangled）measurements．
－Learning output states of the IQP circuit：$|\psi\rangle=\sum_{x}(-1)^{f(x)}|x\rangle$ where f is a degree－3 polynomials．
－Learning quantum circuits beyond T－depth one．
－Learning certain parameterized quantum circuits．
－Relation between quantum circuit simulation and learnability．
－Learning with noisy samples．

```
Hao-Chung Cheng (鄭皓中)
    haochung@ntu.edu.tw
```


you \Rightarrow

[^0]: G. D'Ariano, M. Paris, M Sacchi, "Quantum Tomography," Advances in Imaging and Electron Physics, 128, 205-308, 2003.

[^1]: [Aar07] S. Aaronson. "The learnability of quantum states," Proceedings of the Royal Society A, 463 (2088), 2007

[^2]: K.-M. Chung, H.-H. Lin, "Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem," arXiv:1810.10938.

[^3]: A. Montanaro, "Learning stabilizer states by Bell sampling," arXiv:1707.04012.

