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How to learn a quantum device?

• Suppose that you have manufactured a quantum device, e.g. 
a quantum system, circuit, or measurement apparatus. 
How do you know that it works as expected?
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[S. Flammia, QIP 2017]



Problem Formulation – Learning Quantum States 

• Given: Many copies of an unknown quantum state 𝜌𝜌 ∈ 𝒮𝒮 ℂ𝑑𝑑 , 𝑑𝑑 = 2𝑛𝑛

𝒮𝒮 ℂ𝑑𝑑 ≔ 𝜌𝜌 ∈ ℂ𝑑𝑑×𝑑𝑑:𝜌𝜌 ≥ 0, Tr 𝜌𝜌 = 1
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• Question: 
‒ Sample complexity: How many copies of 𝜌𝜌 are necessary and sufficient to 

produce the hypothesis state �𝜌𝜌?
‒ Time complexity: How long it takes to find such a state �𝜌𝜌?

• Goal: To propose a hypothesis state �𝜌𝜌 ≈ 𝜌𝜌.

Target



Quantum State Tomography

• A standard way – Quantum state tomography
→ Haah et al. (2017): �𝑂𝑂 ⁄𝑑𝑑2 𝜖𝜖2 copies are necessary and sufficient

such that �𝜌𝜌 − 𝜌𝜌 1 ≤ 𝜖𝜖.
→ A general mixed 𝑑𝑑-dimensional state contains 𝑑𝑑2 − 1 parameters!
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• Sometimes, full tomography on an arbitrary state is overkill.
‒ States with certain structures: (1) 𝑟𝑟-rank 𝜌𝜌: �𝑂𝑂 ⁄𝑑𝑑𝑟𝑟 𝜖𝜖2 .

(2) stabilizer states and beyond.
‒ To produce the state �𝜌𝜌 that is Probably and Approximately Correct (PAC).

Haah et al., “Sample-optimal tomography of quantum states,” IEEE Transactions on Information Theory, 63(9), 5628-5641, 2017.

Exponential in the # of qubits

G. D'Ariano, M. Paris, M Sacchi, “Quantum Tomography,” Advances in Imaging and Electron Physics, 128, 205-308, 2003.



The PAC Learning Model

• To learn an unknown target quantum state 𝜌𝜌 ∈ 𝒮𝒮 ℂ𝑑𝑑 :
Randomly (i.i.d.) draw a set of two-outcome measurements 𝐸𝐸1, … ,𝐸𝐸𝑚𝑚
→ Training set: 𝐸𝐸1, Tr 𝜌𝜌𝐸𝐸1 , … , 𝐸𝐸𝑚𝑚, Tr 𝜌𝜌𝐸𝐸𝑚𝑚 , where 𝐸𝐸𝑖𝑖 ∼ 𝜇𝜇.
→ To pick a hypothesis state �𝜌𝜌 such that 
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Born’s Rule

L. G. Valiant, “A theory ofthe learnable,” Comm. ACM, 27(11):1134-31, 1984.

𝐸𝐸𝑖𝑖 ∈ ℂ𝑑𝑑×𝑑𝑑 , 0 ≤ 𝐸𝐸𝑖𝑖 ≤ 𝐼𝐼

Pr
𝜇𝜇

Tr �𝜌𝜌𝐸𝐸 − Tr 𝜌𝜌𝐸𝐸 ≤ 𝜖𝜖 ≥ 1 − 𝛿𝛿

• Given 0 < 𝜖𝜖, 𝛿𝛿 < 1, the sample complexity 𝑚𝑚𝒮𝒮 ℂ𝑑𝑑 𝜖𝜖, 𝛿𝛿 is the least integer 
of 𝑚𝑚 such that the above is satisfied.



Learnability of Quantum States [Aar07]
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[Aar07] S. Aaronson. “The learnability of quantum states,” Proceedings of  the Royal Society A, 463 (2088), 2007

• To learn an unknown n-qubit quantum state:

• Technique: An entropic inequality in Quantum Random Access Codes.

𝑚𝑚𝒮𝒮 ℂ2𝑛𝑛 𝜖𝜖, 𝛿𝛿 = Θ ⁄𝑛𝑛 𝜖𝜖2

• Protocol: take 𝑚𝑚 = 𝑂𝑂 ⁄𝑛𝑛 𝜖𝜖2 many samples of training data and find �𝜌𝜌 that 
has minimum training error 1𝑚𝑚∑𝑖𝑖=1

𝑚𝑚 Tr �𝜌𝜌𝐸𝐸𝑖𝑖 − Tr 𝜌𝜌𝐸𝐸𝑖𝑖 .  

Full tomography: 𝑂𝑂 ⁄4𝑛𝑛 𝜖𝜖2

Empirical Risk Minimizer

• Quantum states are PAC-learnable, i.e. sample-efficient, but not time-efficient!



Quantum Random Access Codes
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A. Ambainis, A. Nayak, A. Ta-Shma, U. Vazirani, “Dense Quantum Coding and Quantum Finite Automata,” J. ACM. 49 (4), 2002

• Random access code
‒ Alice encodes n bits into m (classical or quantum) bits and send them to Bob (n>m)
‒ Bob restores any of the n bits with probability greater than p



Why learning quantum states is sample-efficient?

Are quantum measurements PAC learnable?



Learning Quantum States vs. Measurements

• To learn an unknown target quantum state 𝜌𝜌 ∈ 𝒮𝒮 ℂ𝑑𝑑 :
Randomly (i.i.d.) draw a set of two-outcome measurements 𝐸𝐸1, … ,𝐸𝐸𝑚𝑚
→ Training set: 𝐸𝐸1, Tr 𝜌𝜌𝐸𝐸1 , … , 𝐸𝐸𝑚𝑚, Tr 𝜌𝜌𝐸𝐸𝑚𝑚 .
→ To pick a hypothesis state �𝜌𝜌 such that Tr �𝜌𝜌𝐸𝐸 ≈ Tr 𝜌𝜌𝐸𝐸 .

9

𝐸𝐸𝑖𝑖 ∈ ℂ𝑑𝑑×𝑑𝑑 , 0 ≤ 𝐸𝐸𝑖𝑖 ≤ 𝐼𝐼

• To learn an unknown two-outcome quantum measurement 𝐸𝐸 ∈ ℰ ℂ𝑑𝑑 :
Randomly (i.i.d.) draw a set of states 𝜌𝜌1, … ,𝜌𝜌𝑚𝑚
→ Training set: 𝜌𝜌1, Tr 𝜌𝜌1𝐸𝐸 , … , 𝜌𝜌𝑚𝑚, Tr 𝜌𝜌𝑚𝑚𝐸𝐸 .

→ To pick a hypothesis operator �𝐸𝐸 such that Tr 𝜌𝜌 �𝐸𝐸 ≈ Tr 𝜌𝜌𝐸𝐸 .



unknown target function

training samples

hypothesis set

learning algorithm

Unknown distribution

final hypothesis

training

testing

• binary classification:
• multiclass classification:
• regression:
• unsupervised:

Different Output Space        

Statistical Learning Framework



Vapnik–Chervonenkis Dimension
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Fat-Shattering Dimension
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Covering Number
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Rademacher Complexity
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Proof Roadmap
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1. Formulate learning operators into learning real-valued functions.

2. Invoke a bound in Banach space theory that relates the number of 
samples to the expected norm of the input space.

3. Apply some matrix concentration inequalities to calculate the expected 
norm so as to obtain an upper bound to the sample complexity.



Take-Home Message –Real-Valued Functions

• Learning quantum state ↔ learning linear functionals parameterized by :
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• Learning measurements↔ learning linear functionals parameterized by :



Learning Quantum States and Measurements
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Learning Setup Learning Measurements Learning States

Space Input space Input space

Target concept

Hypothesis set

Loss function Absolute or Square Error

Risk

Learnability Fat-shattering dimension, etc. 

Output space

Dual problem



Key Ingredient: A Banach Space Theory
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[MS04] S. Mendelson and G. Schechtman, “The shattering dimension of sets of linear functionals,” Annals of Probability, vol. 32, pp. 1746-1770, 2004



Reduction
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Matrix Concentration Inequality

20J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Found. Comput. Math., 12(4), pp. 389-434, 2012



Noncommutative Khintchine Inequalities

21[LP91] F. Lust-Piquard and G. Pisier, “Noncommutative Khintchine and Paley inequalities,” Ark. Mat. 29, 2 (1991), 241-260



Our Main Results (1/2)
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• Learning quantum state 𝜌𝜌 ∈ 𝒮𝒮 ℂ𝑑𝑑 :

→ Sufficiency: 𝑚𝑚𝒮𝒮 ℂ𝑑𝑑 𝜖𝜖, 𝛿𝛿 ≤ 𝑂𝑂 ⁄log𝑑𝑑 𝜖𝜖2 .

• Learning quantum measurement 𝐸𝐸 ∈ ℰ ℂ𝑑𝑑 :

→ Sufficiency: 𝑚𝑚ℰ ℂ𝑑𝑑 𝜖𝜖, 𝛿𝛿 ≤ 𝑂𝑂 ⁄𝑑𝑑 𝜖𝜖2 .

→ Necessity: 𝑚𝑚ℰ ℂ𝑑𝑑 𝜖𝜖, 𝛿𝛿 ≥ ⁄𝑑𝑑 𝜖𝜖2.
(1)∃ examples of 𝑑𝑑 many states that can be shattered by ℰ ℂ𝑑𝑑 .
(2) By Kai-Min: Boolean functions are embedded in ℰ ℂ𝑑𝑑 .



Our Main Results (2/2)

23

Full tomography

Exponential

Quadratic 



Intuitions
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• Schatten ∞-ball is much larger than the Schatten 1-ball .



Related Works
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Other Learning Models (1/2)
• Adversarial online learning (for states):

‒ Learning happens in rounds; no more distributions on measurements.
‒ In each round, adversary sends 𝐸𝐸𝑖𝑖 ; the learner replies Tr �𝜌𝜌𝑖𝑖𝐸𝐸𝑖𝑖 .
‒ If Tr �̂�𝜌𝑖𝑖𝐸𝐸𝑖𝑖 − Tr 𝜌𝜌𝐸𝐸𝑖𝑖 ≥ 𝜖𝜖, the adversary says ‘mistake’; as fewer mistakes as possible.
‒ Aaronson et al. (2019): 𝑂𝑂 log𝑑𝑑 mistakes are sufficient.
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S. Aaronson, X. Chen, E. Hazan, S. Kale, A. Naya, "Online learning of quantum states," J. Stat. Mech. (2019) 124019.

S. Arunachalam, Y. Quek, J. Smolin, “Private learning implies quantum stability,”  arXiv:2102.07171

• Relations between various learning models (for states):
‒ Arunachalam, Quek, Smolin (2021): 

Information-theoretic implications for online learning, differential private PAC learning, etc.



Other Learning Models (2/2)

• PAC Learning quantum circuits:
‒ Chung and Lin (2018): Sample-efficient for finite sets of quantum circuits.
‒ Caro and Datta (2020): Sample-efficient (pseudo-dimension) for certain classes of circuits. 
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K.-M. Chung, H.-H. Lin, “Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem,” arXiv:1810.10938.

M. Caro, I. Datta, “Pseudo-dimension of quantum circuits,” Quantum Machine Intelligence, 2(2), 2020.



Shadow Tomography
• Instead of learning quantum states on some random measurements, but on a 

fixed set of measurements.
‒ Given 𝐸𝐸1, … ,𝐸𝐸𝑘𝑘 , how many copies of 𝜌𝜌 are sufficient to estimate Tr 𝜌𝜌𝐸𝐸1 , … , Tr 𝜌𝜌𝐸𝐸𝑘𝑘 ?
‒ Aaronson et al. (2018): poly log 𝑘𝑘 , log𝑑𝑑 copies are sufficient (exponentially better).
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S. Aaronson, “Shadow tomography of quantum states,” STOC, 2018.

H.-Y. Huang, Richard Kueng, "Predicting features of quantum systems using classical shadows", arXiv:1908.08909.

• Related works: classical shadows
‒ Huang and Kueng (2019): 
𝑂𝑂 𝑘𝑘 many measurement statistics are sufficient to predict 𝑘𝑘 linear functions of 𝜌𝜌.



Learning States under Certain Structures (1/3)
• Hamiltonian learning:

Given copies of the Gibbs state 𝜌𝜌𝜇𝜇 = 1
𝑍𝑍𝛽𝛽
e−𝛽𝛽𝛽𝛽 and basis 𝐸𝐸𝑖𝑖 𝑖𝑖, where 𝐻𝐻 = ∑𝑖𝑖 𝜇𝜇𝑖𝑖𝐸𝐸𝑖𝑖 is an 𝜅𝜅-local   

Hamiltonian, output an appion of �⃗�𝜇.

→ Anshu et al. (2020): �Θ poly e𝛽𝛽+𝜅𝜅 ,𝛽𝛽−1, 𝜖𝜖−1,𝑛𝑛3 copies are necessary and sufficient.

→ Learning a generic Hamiltonian is NOT time-efficient.
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A. Anshu, S. Arunachalam, T. Kuwahara, M. Soleimanifar, "Sample efficient learning of quantum many-body systems," FOCS 2020.



Learning States under Certain Structures (2/3)
• So far…

‒ Full state tomography is not sample-efficient (even for pure states).
‒ PAC learning measurements is not sample-efficient (but better than full tomography)
‒ PAC learning, shadow tomography, online learning, and learning Hamiltonian are 

sample-efficient but time-expensive in general.
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• Is it possible to time-efficiently learn certain interesting classes of states?
→ Yes!

‒ Exact learning  (with high probability producing the hypothesis = target)
‒ PAC learning



Learning States under Certain Structures (3/3)
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A. Montanaro, “Learning stabilizer states by Bell sampling,” arXiv:1707.04012.

A. Rocchetto, “Stabiliser states are efficiently PAC-learnable,” Quantum Information and Computation, 18(7&8), 2018.

Rocchetto1 et al., “Experimental learning of quantum states,” Science Advances, 5(3), 2019.

C.-Y. Lai, H.-C. Cheng, “Learning quantum circuits of some T gates,” arXiv:2106.12524.

• Montanaro (2017): Exact learn stabilizer states via Bell sampling in 𝑂𝑂 𝑛𝑛 .
• Low (2009): Sample-efficient for some Clifford hierarchies.
• Rocchetto (2018): Efficiently PAC learn stabilizer states.
• Lai and Cheng (2021): Exact learn the following 

‒ Clifford circuits using 𝑂𝑂 𝑛𝑛2 queries in time 𝑂𝑂 𝑛𝑛3 .
‒ Output states of an 𝑻𝑻-depth one circuit using 𝑂𝑂 3𝑘𝑘𝑛𝑛 queries in time 𝑂𝑂 𝑛𝑛3 + 3𝑘𝑘𝑛𝑛 .

R. Low, “Learning and testing algorithms for the Clifford group,” Phys. Rev. A, 80(5) 052314, 2009.
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• An excellent overview talk by Srinivasan Arunachalam (TQC 2021):
https://www.youtube.com/VqQTIjS8bDQ?start=32721



Discussions
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Open Problems
• Learning global quantum states using only local operations and classical 

communication (LOCC).
• Learning separable (i.e. not entangled) measurements.

• Learning output states of the IQP circuit: 𝜓𝜓 = ∑𝑥𝑥 −1 𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ where 𝑓𝑓 is 
a degree-3 polynomials.

• Learning quantum circuits beyond 𝑇𝑇-depth one.
• Learning certain parameterized quantum circuits.
• Relation between quantum circuit simulation and learnability.
• Learning with noisy samples.
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