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Real Task: The Factoring Problem

I Integer factoring
- Input: a large composite number of L bits
- Output: a nontrivial integer factor

I no known (classical) algorithm can do factoring in polynomial time O(Lk ) for some constant k .
I The largest number that is the product of two large primes of similar size and yet factored is

RSA-768.
- a 768-bit number with 232 decimal digits, on December 12, 2009
- It takes almost 2000 years of computing on a single-core 2.2 GHz AMD Opteron.
- ∼ 1020 operations

I Peter Shor’s quantum factoring algorithm: O(L3) in time with O(L) qubits.

Need a quantum computer with ∼ 1000 qubits that affords 1010 operations!

Each quantum operation should be accurate up to O(10−10) error rate!
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Google’s Quantum Chip: Sycamore

Arute, F., Arya, K., Babbush, R. et al. “Quantum supremacy using a programmable superconducting processor," Nature 574, 505–510 (2019)
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Need quantum error correction!
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Discretization of the Errors

I The Pauli matrices

{I =

(
1 0
0 1

)
,X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,Y =

(
0 −i
i 0

)
= iXZ}

form a basis for the space of linear operators on a single-qubit L(C2).

Bit flip X |0〉 = |1〉, X |1〉 = |0〉
Phase flip Z |0〉 = |0〉, Z |1〉 = −|1〉

I (independent) Depolarizing channel with parameter ε:
- no error (I) with probability 1− ε
- X with probability ε/3
- Y with probability ε/3
- Z with probability ε/3

6



Discretization of the Errors

I The Pauli matrices

{I =

(
1 0
0 1

)
,X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,Y =

(
0 −i
i 0

)
= iXZ}

form a basis for the space of linear operators on a single-qubit L(C2).

Bit flip X |0〉 = |1〉, X |1〉 = |0〉
Phase flip Z |0〉 = |0〉, Z |1〉 = −|1〉

I (independent) Depolarizing channel with parameter ε:
- no error (I) with probability 1− ε
- X with probability ε/3
- Y with probability ε/3
- Z with probability ε/3

6



Commutation Relation

I n-fold Pauli operators {M1 ⊗M2 ⊗ · · · ⊗Mn : Mi ∈ {I,X ,Y ,Z}}.
- X ⊗ X ⊗ Y ⊗ Z ⊗ I ⊗ Z .
I Every n-fold Pauli operator has eigenvalue ±1.
I Two Pauli operators either commute or anticommute with each other.
I For two Pauli operators f , g,

〈f , g〉 =

{
0, fg = gf ;

1, otherwise.
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Quantum Stabilizer Codes

I S = 〈S1,S2, · · · ,Sm〉: an Abelian subgroup of {I,X ,Y ,Z}n and −I /∈ S.

〈Si ,Sj〉 = 0.

I An [[n, k , d ]] quantum stabilizer code C(S) defined by stabilizer group S is the 2k -dimensional
subspace of the n-qubit state space C2n

fixed by S so that any error E ∈ {I,X ,Y ,Z}n of
wt(E) ≤ d − 1 is detectable.

C(S) = {|ψ〉 ∈ C2n
: S|ψ〉 = |ψ〉 , ∀S ∈ S}.

I For S ∈ S, ES and E have the same effect on the code space:

ES|ψ〉 = E|ψ〉.

They are degenerate errors!
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I An error E can be detected if it anticommutes with some Sj ∈ S:

Sj (E|ψ〉) = −ESj |ψ〉 = − (E|ψ〉).

I The error syndrome of E is a binary (n − k)-tuple of the measurement outcome of S1, . . . ,Sm,
given by

〈E,S1〉, 〈E,S2〉, . . . , 〈E,Sm〉
I Stabilizer parity-check matrix

H =


S1

S2
...

SM


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Decoding a stabilizer code: Given
I a check matrix H ∈ {I,X ,Y ,Z}M×N ;
I a binary syndrome z ∈ {0, 1}M of some (unknown) e ∈ {I,X ,Y ,Z}N ;
I certain characteristics of the error model,

the decoder has to infer a vector ê ∈ {I,X ,Y ,Z}N such that
I 〈ê,Hm〉 = zm for m = 1, 2, . . . ,M;
I ê − e ∈ S

with probability as high as possible.
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Quantum Low-Density Parity-Check (LDPC) Codes

I A desired quantum code has two important features:
1. feasible syndrome measurements:

- only a small subset of qubits are involved in a syndrome bit (sparse interaction)
- the involved qubits are close (locality)

2. efficient decoder (decoding time polynomial in n, preferably linear in n)

I Quantum version of LDPC codes are a good candidate for quantum error correction.
- low-weight parity-checks
- Belief propagation (BP) decoding
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Surface Codes

I Surface codes have the highest known simulated error threshold of about 0.1 ∼ 0.5%.
arXiv:0905.0531, arXiv:1208.0928

- Qubits are located at the white circles.

- The stabilizers (black circles) are of low-weight 4 or 3 and have local support.

- The minimum distance of the code is proportional to the side length of the lattice.

- Decoding by the minimum-weight perfect matching (MWPM) algorithm: O(d4 log d)
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Oscar Higgott, “PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching," 2021. arXiv:2105.13082
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N. Delfosse and N. Nickerson. “Almost-linear time decoding algorithm for
topological codes,"2017. arXiv:1709.06218

Good BP decoding algorithm for quantum error correction?

Potential: O(d2 log d)
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Belief Propagation for Quantum Codes

I Sparse-graph quantum codes can be decoded by the belief propagation (BP) algorithm.

I A binary quantum code (that handles Pauli errors I,X ,Y ,Z ) is decoded using GF(4)-based BP.

I An independent depolarizing channel with rate ε so that a single qubit independently suffers a
Pauli error I,X ,Y , or Z with probability (pI , pX , pY , pZ ) = (1− ε, ε/3, ε/3, ε/3),

I Estimate (qI
n, qX

n , qY
n , qZ

n ), where qW
n = P(En = W |z).

I The log-likelihood ratios (LLRs) ΓX
n = ln

qI
n

qX
n

, ΓY
n = ln

qI
n

qY
n

, ΓZ
n = ln

qI
n

qZ
n

I Output Ê = (Ê1, Ê2, . . . , ÊN) such that

Ên = arg max
W∈{I,X ,Y ,Z}

P̂(En = W |z).
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Issues of BP for Quantum Codes

I For complexity, GF(2)-based BP is usually used with necessary approximation to GF(4)
– The computational cost for decoding in GF (q) scales as q log q.

(Mackay, Information Theory, Inference, and Learning Algorithms, 2003)

I Quantum codes inevitably have many 4-cycles, which greatly degrade the performance of BP.

Data nodes

1

2

3

4

5

6

7

1

2

3

4

5

6

Check nodes
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Decoding the Surface Codes–A Naive Trial
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Belief Propagation for Quantum Codes

I Sparse-graph quantum codes can be decoded by the belief propagation (BP) algorithm.
I A binary quantum code (that handles Pauli errors I,X ,Y ,Z ) is decoded using GF(4)-based BP.
I For complexity, GF(2)-based BP is usually used with necessary approximation to GF(4)
I The computational cost for decoding in GF (q) scales as q log q.

(Mackay, Information Theory, Inference, and Learning Algorithms, 2003)

It is possible to adapt the required GF (4)-based BP to a GF (2)-like BP algorithm without additional
cost.

K.-Y. Kuo and C.-Y. Lai, “Refined belief propagation decoding of sparse graph quantum codes,” IEEE
J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 487–498, Aug. 2020
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An interpretation of the decoding problem on an energy function topography.
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Decoding problem as Energy Function Minimization

I Given a syndrome s, the energy of E = E1 ⊗ E2 ⊗ · · · ⊗ En is

J(E) = −
n−k∑
i=1

(−1)si (−1)〈E,Si 〉
(

pwt(E)(1− p)n−wt(E)
)
.

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube," IEEE Trans. Inf.

Theory ( Volume: 35, Issue: 5, Sep 1989)
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Quantum Energy Function Minimization

I Let

λW (γX , γY , γZ ) , ln
1 + e−γ

W

e−γX + e−γY + e−γZ − e−γW .

I

J(Γ) =
1
2
‖Γ− Λ‖2

2

− η
M∑

m=1

2 tanh−1

(−1)zm
∏

n∈N (m)

tanh

(
λSmn (Γn)

2

)
where η > 0 ∈ R.
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Belief Propagation as a Gradient Decent

I Belief propagation can be considered as a gradient descent algorithm on the energy
topography.

R. Lucas, M. Bossert, M. Breitbach, “On iterative soft-decision decoding of linear binary block codes and product codes," IEEE J.

Sel. Areas Commun. 16, 276 (1998).
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∂J
∂ΓW

n
= ΓW

n − ΛW
n +

∑
m∈M(n)
Smn=W

ηgmn(Γ)e−ΓW
n

1 + e−ΓW
n

∆̃m→n

−
∑

m∈M(n)
〈W,Smn〉=1

ηgmn(Γ)e−ΓW
n

e−ΓX
n + e−ΓY

n + e−ΓZ
n − e−Γ

Smn
n

∆̃m→n,

where

gmn(Γ) =
1 − tanh2 λSmn (Γn)

2

1 −
(∏

l∈N (m) tanh
λSml

(Γl )

2

)2 > 0,

and

∆̃m→n =(−1)zm
∏

n′∈N (m)\n

tanh
λSmn′

(Γn′ )

2
.
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Energy Topography
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New Ingradients

I Large step size: Choose αi to be smaller than 1.
– This contradicts to what people will do in classical coding theory.

I Memory effects
– By slightly changing the original algorithm, the BP can have a memory effect without additional

complexity.
– The memory effect provides resistance to wrong belief and maintain a momentum to escape from a

local barrier.

Our MBP converges significantly better than conventional BP.
I Initial physical error rate matters.

M. Hagiwara, M. P. C. Fossorier, and H. Imai, “Fixed initialization decoding of LDPC codes over a binary symmetric

channel," IEEE Trans. Inf. Theory 58, 2321 (2012).
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BP as an RNN
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Decoding the Surface Codes

Kao-Yueh Kuo and C.-Y. Lai, “Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes," in preparation.
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Thank you!
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