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Real Task: The Factoring Problem

Integer factoring

- Input: a large composite number of L bits

- Output: a nontrivial integer factor
no known (classical) algorithm can do factoring in polynomial time O(L¥) for some constant k.
The largest number that is the product of two large primes of similar size and yet factored is
RSA-768.

- a 768-bit number with 232 decimal digits, on December 12, 2009
- It takes almost 2000 years of computing on a single-core 2.2 GHz AMD Opteron.
- ~ 10?0 operations

Peter Shor’s quantum factoring algorithm: O(L®) in time with O(L) qubits.
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Peter Shor’s quantum factoring algorithm: O(L®) in time with O(L) qubits.

Need a quantum computer with ~ 1000 qubits that affords 10'° operations!
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Peter Shor’s quantum factoring algorithm: O(L®) in time with O(L) qubits.

Need a quantum computer with ~ 1000 qubits that affords 10'° operations!

Each quantum operation should be accurate up to O(10~°) error rate!




Google’s Quantum Chip: Sycamore
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Need quantum error correction!



Discretization of the Errors

» The Pauli matrices

I R B R I

form a basis for the space of linear operators on a single-qubit £(C?).

Bitflip  X|0) =|1), X[1) = |0)
Phase flip  Z|0) = |0), Z|1) = —|1)



Discretization of the Errors

» The Pauli matrices

R PR R

form a basis for the space of linear operators on a single-qubit £(C?).

Bitflip  X|0) =|1), X[1) = |0)
Phase flip  Z|0) = |0), Z|1) = —[1)

» (independent) Depolarizing channel with parameter e:
- no error (/) with probability 1 — ¢
- X with probability /3
- Y with probability ¢/3
- Z with probability ¢/3




Commutation Relation

v

n-fold Pauli operators {M; @ Mo @ --- @ M : My € {I, X, Y, Z}}.

- XRXRY®RZI®I®Z

Every n-fold Pauli operator has eigenvalue +1.

Two Pauli operators either commute or anticommute with each other.

For two Pauli operators f, g,
0, fg=df;
(f.g) = { 79
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1, otherwise.




Quantum Stabilizer Codes

» S =(S1,S8,---,Sm): an Abelian subgroup of {/, X, Y,Z}"and —/ ¢ S.
(8/,8;) =0.



Quantum Stabilizer Codes

» 8§ =(S1,82, -+ ,Sm): an Abelian subgroup of {/, X, Y,Z}"and —/ ¢ S.
(81.8)) = 0.
» An [[n, k, d]] quantum stabilizer code C(S) defined by stabilizer group S is the 2*-dimensional

subspace of the n-qubit state space C?" fixed by S so thatany errorE € {/, X, Y, Z}" of
wt(E) < d — 1 is detectable.

C(S) = {lv) e C¥": S|¥) = [4h) ,VS € S).
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Quantum Stabilizer Codes

» 8§ =(S1,82, -+ ,Sm): an Abelian subgroup of {/, X, Y,Z}"and —/ ¢ S.
(8/,8;) =0.
» An [[n, k, d]] quantum stabilizer code C(S) defined by stabilizer group S is the 2*-dimensional

subspace of the n-qubit state space C?" fixed by S so thatany errorE € {/, X, Y, Z}" of
wt(E) < d — 1 is detectable.

C(S) = {|v) € C*": [S[y) = [1)) , VS € S}.
» For S € S, ES and E have the same effect on the code space:
ES|y) = E[¢).

They are degenerate errors!




» An error E can be detected if it anticommutes with some S§; € S:

Si(E[¥)) = —ESjl¢) = — (E[).



» An error E can be detected if it anticommutes with some S§; € S:

Si(E[¢)) = —ESjlv) = — (E[¢)).

» The error syndrome of E is a binary (n — k)-tuple of the measurement outcome of Sy, ...

given by
<E7 s1>7 <E7 sz>a B <E7 Sm)
» Stabilizer parity-check matrix
S;
S>
H=.

Su



Decoding a stabilizer code: Given
» acheck matrix H € {I, X, Y, Z}M*N;
» abinary syndrome z € {0, 1} of some (unknown) e € {/, X, Y, Z}";
» certain characteristics of the error model,
the decoder has to infer a vector & € {/, X, Y, Z}" such that
> (&,Hm) =znform=1,2,...,M;
»e—ecS
with probability as high as possible.



Quantum Low-Density Parity-Check (LDPC) Codes

» A desired quantum code has two important features:
1. feasible syndrome measurements:

- only a small subset of qubits are involved in a syndrome bit (sparse interaction)
- the involved qubits are close (locality)

2. efficient decoder (decoding time polynomial in n, preferably linear in n)




Quantum Low-Density Parity-Check (LDPC) Codes

» A desired quantum code has two important features:
1. feasible syndrome measurements:

- only a small subset of qubits are involved in a syndrome bit (sparse interaction)
- the involved qubits are close (locality)

2. efficient decoder (decoding time polynomial in n, preferably linear in n)

» Quantum version of LDPC codes are a good candidate for quantum error correction.
- low-weight parity-checks
- Belief propagation (BP) decoding




Surface Codes

» Surface codes have the highest known simulated error threshold of about 0.1 ~ 0.5%.
arXiv:0905.0531, arXiv:1208. 0928
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Qubits are located at the white circles.
The stabilizers (black circles) are of low-weight 4 or 3 and have local support.

The minimum distance of the code is proportional to the side length of the lattice.
Decoding by the minimum-weight perfect matching (MWPM) algorithm: O(d4 log d)



(a) Matching graph (b) Error

—k
(d)  Minimum-weight  perfect
matching

(¢) Syndrome graph

(e) Correction

Oscar Higgott, “PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching," 2021. arXiv:2105.13082



N. Delfosse and N. Nickerson. “Almost-linear time decoding algorithm for
topological codes,"2017. arXiv:1709.06218



N. Delfosse and N. Nickerson. “Almost-linear time decoding algorithm for
topological codes,"2017. arXiv:1709.06218

Good BP decoding algorithm for quantum error correction?

Potential: O(d? log d)



Belief Propagation for Quantum Codes

» Sparse-graph quantum codes can be decoded by the belief propagation (BP) algorithm.

.
@ The Tanner graph of Sax3 = {)Z{ ‘; ‘I,]

» A binary quantum code (that handles Pauli errors /, X, Y, Z) is decoded using GF(4)-based BP.




Belief Propagation for Quantum Codes

» Sparse-graph quantum codes can be decoded by the belief propagation (BP) algorithm.

.
@ The Tanner graph of Sax3 = {)Z( ‘Z/ }I/]

A binary quantum code (that handles Pauli errors /, X, Y, Z) is decoded using GF(4)-based BP.
An independent depolarizing channel with rate ¢ so that a single qubit independently suffers a
Pauli error I, X, Y, or Z with probability (o', p*, p",p?) = (1 — ¢,¢/3,¢/3,¢/3),

Estimate (ql, g%, gy, g%), where g = P(E,, = W|z).

The log-likelihood ratios (LLRs) I = In q" .M =1n g" rZ=mndy
Output E= (E1,E2, R EN) such that

E,= argmax P(E,= W|z).
We{l,X,Y,Z}
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Issues of BP for Quantum Codes

» For complexity, GF(2)-based BP is usually used with necessary approximation to GF(4)
— The computational cost for decoding in GF(q) scales as qlog g.
(Mackay, Information Theory, Inference, and Learning Algorithms, 2003)



Issues of BP for Quantum Codes

» For complexity, GF(2)-based BP is usually used with necessary approximation to GF(4)
— The computational cost for decoding in GF(q) scales as qlog g.
(Mackay, Information Theory, Inference, and Learning Algorithms, 2003)

» Quantum codes inevitably have many 4-cycles, which greatly degrade the performance of BP.
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Decoding the Surface Codes—A Naive Trial
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Belief Propagation for Quantum Codes

Sparse-graph quantum codes can be decoded by the belief propagation (BP) algorithm.
A binary quantum code (that handles Pauli errors /, X, Y, Z) is decoded using GF(4)-based BP.
» For complexity, GF(2)-based BP is usually used with necessary approximation to GF(4)

The computational cost for decoding in GF(q) scales as qlogq.
(Mackay, Information Theory, Inference, and Learning Algorithms, 2003)
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It is possible to adapt the required GF(4)-based BP to a GF(2)-like BP algorithm without additional J
cost.

K.-Y. Kuo and C.-Y. Lai, “Refined belief propagation decoding of sparse graph quantum codes,” IEEE
J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 487—-498, Aug. 2020 J




An interpretation of the decoding problem on an energy function topography.



Decoding problem as Energy Function Minimization

» Given a syndrome s,theenergy of E=E1 Q B2, ® --- ® Ej is

n—k
J(E) = — Z(_1 )Si(—1 )(E,Si) (pw1(E)(1 _ p)"—wl(E)).

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube," IEEE Trans. Inf.
Theory ( Volume: 35, Issue: 5, Sep 1989)
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Quantum Energy Function Minimization

> Let

w
1+e”
e +e 7 e —e "’

)\W(7X7 7Y7 ’YZ) £ In

1
J(N) =5 IF = Al
2

—17i2tanh71 ((—1)2’" H tanh <>\‘9"”’2(r'7)))

m=1 neN (m)

where n > 0 € R.

21



Belief Propagation as a Gradient Decent

topography.

Sel. Areas Commun. 16, 276 (1998).

J(w) Initial ' _— Gradient

Global cost minimum
Jmin(W)

» Belief propagation can be considered as a gradient descent algorithm on the energy

R. Lucas, M. Bossert, M. Breitbach, “On iterative soft-decision decoding of linear binary block codes and product codes," IEEE J.
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Input: A check matrix § € {I,X,Y,Z}*" a syndrome
vector z € {0, I}M, and initial LLR values {A‘,’f, AV AZWN
Initialization. Forn=1,2,...,N, W € {X,Y,Z}, and
m € M(n), let

Ilm =AY
Horizontal Step. For m=1,2,...,M and n € N(m)
compute

Amcsn = (=1)7

2] As L (Torsm)- 9
REN (N[} o (Lr>m) ®
Vertical Step. Forn=1,2,...,N and W € {X,Y, 7},
compute

oy =A+ D> Amn (10)

me M(n)
(W,Smn)=1

.

(Hard Deci_sion.) Let £ = Elﬁz s E'N, where
B, =TT\ <0forall W e {X,Y,Z}, and
E, = argmax I'W, otherwise.
We{X,Y,Z}
If (E, S.n) = zm ¥ m, halt and return “SUCCESS”;

- Otherwise, if a maximum number of iterations is
reached, halt and return “FAIL";

Otherwise, for n =1,2,...,N, W € {X,Y, Z}, and
m € M(n), compute

Y =T — (W, Smn) A (1)

- Repeat from the horizontal step.

23
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New Ingradients

» Large step size: Choose «; to be smaller than 1.
— This contradicts to what people will do in classical coding theory.

25
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» Memory effects
— By slightly changing the original algorithm, the BP can have a memory effect without additional
complexity.
— The memory effect provides resistance to wrong belief and maintain a momentum to escape from a
local barrier.
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New Ingradients

» Large step size: Choose «; to be smaller than 1.
— This contradicts to what people will do in classical coding theory.

» Memory effects
— By slightly changing the original algorithm, the BP can have a memory effect without additional
complexity.
— The memory effect provides resistance to wrong belief and maintain a momentum to escape from a
local barrier.

Our MBP converges significantly better than conventional BP.

» Initial physical error rate matters.
M. Hagiwara, M. P. C. Fossorier, and H. Imai, “Fixed initialization decoding of LDPC codes over a binary symmetric
channel," IEEE Trans. Inf. Theory 58, 2321 (2012).
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Input: A check matrix § & {I, X, Y, Z}**V a syndrome
vector z € {0, 1}, and initial LLR values {AX,AY, AZ}N_,.
Initialization. Forn=1,2,... N, W € {X,Y,Z}, and
m € M(n), let

Dlm=AT.
Horizontal Step. For m=1,2,..., M and n € N (m),
compute

Amon = (=1)" 8 (Lnism)- (©)]

B A
n’'eN (m)\{n}

Vertical Step. Forn=1,2,...,N and W € {X|Y, 7},
compute

=AY 2 Aman=B D Amon (10)
mEM(n) meM(n)
(W, Smn)=1 Smn=W

o (Hard Decision.) Let E = E1E» .- E, where
E,=TiTV <0foral We {X,Y,Z}, and
E. = argmax IV, otherwise.
We{X,Y,Z}

o It (£, S,,) = 2 ¥ m, halt and return “SUCCESS”;

- Otherwise, if a maximum number of iterations is

reached, halt and return “FAIL7;

- Otherwise, for n =1,2,...,N, W € {X,Y, Z}, and
m € M(n), compute

T oam =10 — (W, Smn) A, (11)

- Repeat from the horizontal step.

26



Z
Z
o
c
(4
(2]
©
o
[a]

27



10°
Parallel BP,, 10 a,
Serial BP,, ,=0.65
L O d=5
10 x
a
*
L 102F o
2 +
£ *
5 —A— d=17 (multiple a,'s)
£ 100k BDD, N=17%,d=17
3 ~ — —BDD, N=172,d=51
Fr OO
= 4l § gx0
o
o gtBi
#5520
$gc0
1058500
10 : -
10 105 104 10° 102 107!

Kao-Yueh Kuo and C.-Y. Lai, “Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes," in preparation.
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TABLE 1. Most significant modified decoding strategies for QLDPC codes.

2005 -----

2008 -----

2012

2015 .-

2019...-.

2019/2020 - - - - -

Initial Proposal for a Modified
SPA-based decoding Strategy [16].

Correlation Exploiting Decoder [20].

Freezing, Collision & Random
Perturbation Decoders [53].

Enhanced Feedback Decoder [113].
Supernode Decoder [18].

Adjusted & Augmented Decoders
[115].

Ordered Statistics Decoder [116],
[117].

Refined Belief Propagation
Decoding [118].

P. Fuentes et al., “Degeneracy and Its Impact on Decoding
of Sparse Quantum Codes," IEEE Access, vol. 9, pp.
89093-89119, 2021.

[16]

[20]

[53]

[113]

[18]

[115]
[116]

[117]

D. J. C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2315-2330,
Oct. 2004

H. Lou and J. Garcia-Frias, “On the application of error-correcting codes with low
density generator matrix over different quantum channels,” in Proc. 4th Int. Symp.
Turbo Codes Related Topics, 2006, pp. 1-6.

D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum codes,”
Quant. Inf. Comput., vol. 8, no. 10, p. 987, 2008.

Y.-J. Wang, B. C. Sanders, B.-M. Bai, and X.-M. Wang, “Enhanced feedback
iterative decoding of sparse quantum codes,” IEEE Trans. Inf. Theory, vol. 58, no.
2, pp. 1231-1241, Feb. 2012

Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen years of quantum
LDPC coding and improved decoding strategies,” IEEE Access, vol. 3, pp.
2492-2519, Nov. 2015

A. Rigby, J. C. Olivier, and P. Jarvis, “Modified belief propagation decoders for
quantum low-density parity-check codes,” Phys. Rev. A, vol. 100, no. 1, Jul. 2019

P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with good finite
length performance,” 2019, arXiv:1904.02703.

J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across the quantum
low-density parity-check code landscape,” Phys. Rev. Res., vol. 2, no. 4, Dec. 2020

[118] K.-Y. Kuo and C.-Y. Lai, “Refined belief propagation decoding of sparsegraph
quantum codes,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 487—498, Aug. 2020
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Thank you!
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