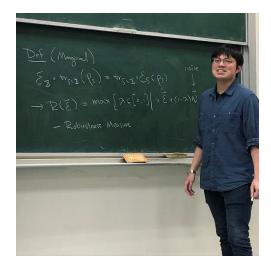


Transitivity of entanglement

Gelo Noel M. Tabia

NCTS Workshop on QST | 25 Aug 2021

Collaborators



Yeong-Cherng Liang NCKU Chung-Yun Hsieh ICFO

Yu-Chun Yin NCKU

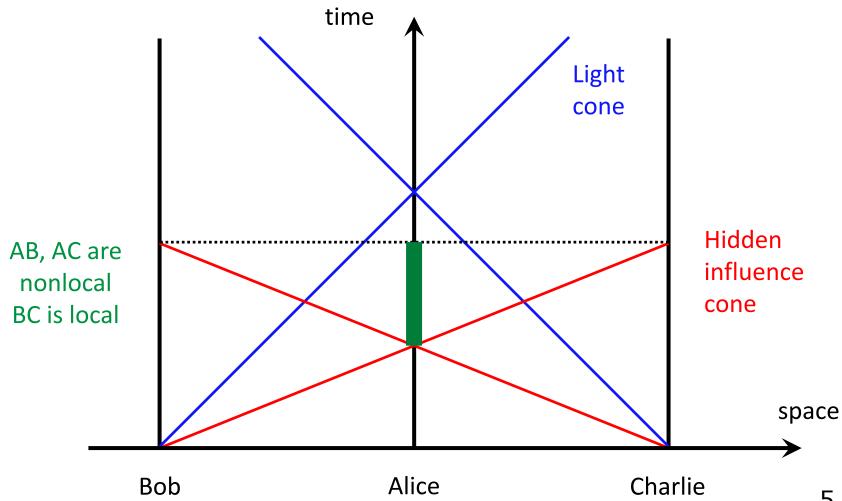
Overview

- What is transitivity of entanglement?
- How do we certify it?
- Do we have some physical picture for it?
- Can we characterize states that display it?

Motivation

- There are quantum correlations that cannot be explained by a local hidden variables.
- But maybe Bell-nonlocal correlations come from a hidden superluminal influence between particles.
- One way to rule it out is to show transitivity of nonlocality.

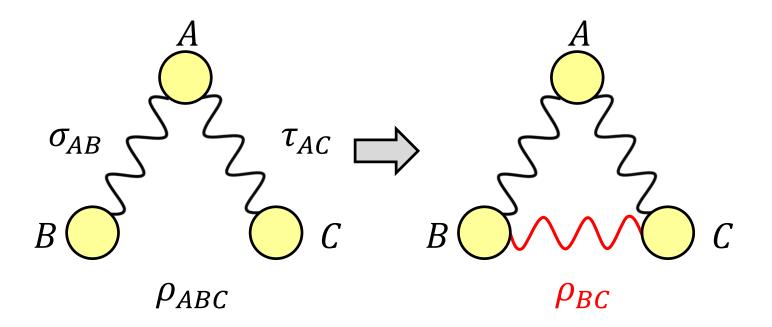
Superluminal influence



5

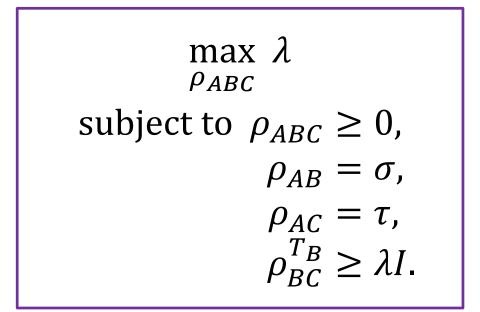
Entanglement transitivity

We say two compatible entangled states σ_{AB} and τ_{AB} exhibit transitivity if for all ρ_{ABC} with $\rho_{AB} = \sigma$, $\rho_{AC} = \tau$, ρ_{BC} is entangled.



Certifying transitivity

We can check if 2-qubit entangled σ_{AB} , τ_{AC} display transitivity with a semidefinite program (SDP):



Dual problem

The dual SDP says it is equivalent to a certain 2-local Hamiltonian problem:

 $\zeta_{ABC} \coloneqq H_{AB} \bigotimes I_C$ $+ H_{AC} \bigotimes I_B - \eta_{BC}^{T_B} \bigotimes I_A$

 $E_{AB} \coloneqq \operatorname{tr}(\sigma_{AB}H_{AB})$ $E_{AC} \coloneqq \operatorname{tr}(\tau_{AC}H_{AC})$

 ρ_{ABC} is a zero-energy ground state of ζ_{ABC}

 $\min_{\substack{H_{AB}, H_{AC}, \eta_{BC}}} E_{AB} + E_{AC}$ subject to $\eta_{ABC} \ge 0$, $\operatorname{tr}(\eta_{ABC}) = 1$, $H_{AB} = H_{AB}^{\dagger}$, $H_{AC} = H_{AC}^{\dagger}$, $\zeta_{ABC} \ge 0$.

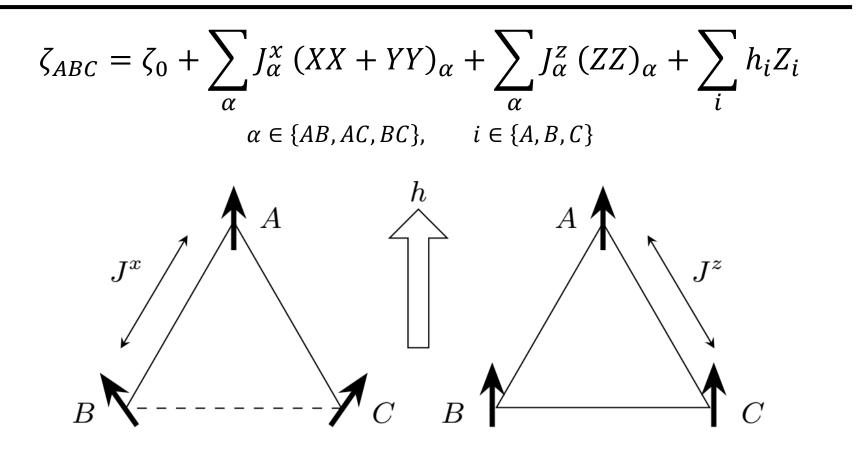
Example: W-state

Let
$$\sigma_{AB} = \tau_{AC} = \frac{2}{3} |\Psi^+\rangle \langle \Psi^+| + \frac{1}{3} |00\rangle \langle 00|$$

Transitivity SDP has $\lambda_* = \frac{1-\sqrt{5}}{6}$ for state
 $|W\rangle_{ABC} = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle)$

The dual SDP gives 2-local Hamiltonian $\zeta_{ABC} = \zeta_0 + \sum_{\alpha} J_{\alpha}^{x} (XX + YY)_{\alpha} + \sum_{\alpha} J_{\alpha}^{z} (ZZ)_{\alpha} + \sum_{i} h_i Z_i$ $\alpha \in \{AB, AC, BC\}, \quad i \in \{A, B, C\}$

Example: W-state



Generalized Heisenberg XXZ model

Symmetric extension

We say ρ_{ABC} is a symmetric extension (SE) of σ_{AB} with respect to A if

 $\operatorname{tr}_{C}(\rho_{ABC}) = \operatorname{tr}_{B}(\rho_{ABC}) = \sigma.$

Transitivity for $\sigma = \tau$ means the bipartite marginals for every SE of σ is entangled

When does a 2-qubit σ_{AB} have a pure and unique SE (e.g., $|W\rangle$)?

Quantum operations

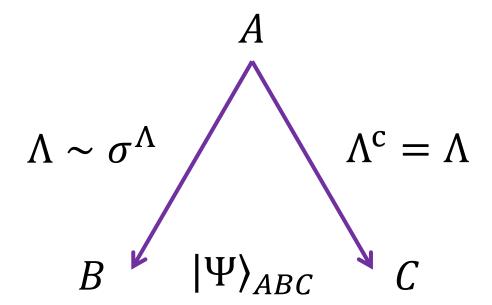
Quantum operations are represented by completely positive (CP) linear maps. Choi operator: $J(\Lambda) = (id_A \otimes \Lambda_B)(\Phi_d)$ Stinespring isometry: joint operation on SE then discard $E: \Lambda(\rho) = tr_E (V_{SE} \rho_S V_{SE}^{\dagger})$

Complementary operation Λ^c of Λ :

$$\Lambda^{\rm c}(\rho) = {\rm tr}_{S} \left(V_{SE} \rho_{S} V_{SE}^{\dagger} \right)$$

Self-complementary

Two-qubit σ_{AB} has a pure unique SE iff it describes a self-complementary operation.



 $|\Psi\rangle_{ABC} = a_0|000\rangle + a_1e^{it}|011\rangle + \frac{b}{\sqrt{2}}(|110\rangle + |101\rangle)$

Conclusion

- We introduced entanglement transitivity and provided a way to certify it.
- It is equivalent to finding a 2-local 3-body Hamiltonian of a particular ground state.
- Two-qubit entangled σ_{AB} with unique SE $|\Psi\rangle_{ABC}$ shows transitivity if $tr_A(|\Psi\rangle\langle\Psi|)$ is NPT.

Nonlocality example

- A $d \otimes d$ entangled state σ_{AB} that is useful for teleportation is *k*-copy Bell-nonlocal
- W-state marginal $\sigma_{AB} = \frac{2}{3} |\Psi^+\rangle \langle \Psi^+| + \frac{1}{3} |00\rangle \langle 00|$ violates Khot-Vishnoi inequality for $k \ge 28$
- Unique SE of $\sigma_{AB}^{\otimes k}$ is $|W\rangle^{\otimes k}$
- Thus, *k*-copy W-state exhibits (state) nonlocality transitivity