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Probability vector : ⃗P = {P(a, b |x, y)}a,b,x,y = (P(00 |00) ⋯ P(11 |11))
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Probability vector : ⃗P = {P(a, b |x, y)}a,b,x,y = (P(00 |00) ⋯ P(11 |11))
Bell Function : ⃗β = (1 −1 −1 ⋯ −1 1)

Bell Value: I = ⃗β ⋅ ⃗P
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Various sets of correlations
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• Local hidden-variable models:    





Local Set: L

PL(a, b |x, y) = ∑
λ

Pλ P(a |x, λ)P(b |y, λ)
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• Quantum mechanics (Born’s rule):  
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• The non-signaling conditions:   





Local Set: L

PL(a, b |x, y) = ∑
λ

Pλ P(a |x, λ)P(b |y, λ) → I = ⃗β ⋅ ⃗P L ≤ 2

Quantum Set: Q

PQ(a, b |x, y) = tr[(Ma|x ⊗ Mb|y) ρ] → I = ⃗β ⋅ ⃗P Q ≤ 2 2

Non-signaling Set: NS

∑
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P(a, b |x, y) = P(a |x, y) = P(a |x)
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P(a, b |x, y) = P(b |x, y) = P(b |y)
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• The non-signaling conditions:   





Local Set: L

PL(a, b |x, y) = ∑
λ

Pλ P(a |x, λ)P(b |y, λ) → I = ⃗β ⋅ ⃗P L ≤ 2

Quantum Set: Q

PQ(a, b |x, y) = tr[(Ma|x ⊗ Mb|y) ρ] → I = ⃗β ⋅ ⃗P Q ≤ 2 2

Non-signaling Set: NS

∑
b

P(a, b |x, y) = P(a |x, y) = P(a |x)

∑
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P(a, b |x, y) = P(b |x, y) = P(b |y)
→ I = ⃗β ⋅ ⃗P NS ≤ 4
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Non-signaling set

Local set

Quantum set

On the boundary of NS 
polytope:

for some a′￼, b′￼, x′￼, y′￼

The inequality constraints of 
NS polytope:

P(a, b |x, y) ≥ 0 ∀a, b, x, y

P(a′￼, b′￼|x′￼, y′￼) = 0

Sets of correlations: L ⊊ Q ⊊ NS
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• Hardy’s nonlocality argument:
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• Local model: 

P(0,0 |0,0) = 0 P(1,1 |0,1) = 0

P(1,1 |1,0) = 0 P(1,1 |1,1) = q

q = 0
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• Hardy’s nonlocality argument:
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• Local model: 


• Quantum model: 


• Finite-dimensional maximally entangled states: 


P(0,0 |0,0) = 0 P(1,1 |0,1) = 0

P(1,1 |1,0) = 0 P(1,1 |1,1) = q

q = 0

q ≥ 0

q = 0

PMES(a, b |x, y) = tr[(Ma|x ⊗ Mb|y) |Ψd⟩⟨Ψd | ], |Ψd⟩ =
1

d

d

∑
i=1

| ii⟩
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• For the finite-dimensional maximally entangled states set, some of the 
non-signaling boundaries can’t be achieved anymore.


• Future work:


• Trying to characterize more detail about the quantum set and 
maximally entangled state set.


• Trying other Bell Scenarios.
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Thank you for your attention!


