

When Quantum Boundary Meets The Non-signaling Boundary

<u>Kai-Siang Chen</u>¹, Junyi Wu², Gelo Noel M. Tabia^{1,3}, Chellasamy Jebarathinam^{1,4}, Pei-Sheng Lin¹, Shiladitya Mal¹, and Yeong-Cherng Liang^{1,5}

 ¹Department of Physics and Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan
 ²Department of Physics, Tamkang University, Tamsui, NewTaipei 251301, Taiwan
 ³Center for Quantum Technology, National Tsing Hua University, Hsinchu 300, Taiwan
 ⁴Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
 Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

Outline

- Bell Nonlocality
- The Boundary of Non-signaling Polytope
- Our Results
- Summary

Round	a	b	X	У
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1
4	0	1	0	0
•••	•••	•••	•••	•••

Round	a	b	X	У
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1
4	0	1	0	0
	•••	•••	•••	•••

Probability vector : $\vec{P} = \{P(a, b | x, y)\}_{a, b, x, y} = (P(00 | 00) \cdots P(11 | 11))$

Round	a	b	X	У
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1
4	0	1	0	0
	•••	•••	•••	•••

Probability vector : $\vec{P} = \{P(a, b | x, y)\}_{a, b, x, y} = (P(00 | 00) \cdots P(11 | 11))$

Bell Function :
$$\overrightarrow{\beta} = (1 \ -1 \ -1 \ \cdots \ -1 \ 1)$$

Round	a	b	X	У
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1
4	0	1	0	0
	•••	•••	•••	•••

Probability vector : $\vec{P} = \{P(a, b | x, y)\}_{a, b, x, y} = (P(00 | 00) \cdots P(11 | 11))$

Bell Function :
$$\overrightarrow{\beta} = (1 \ -1 \ -1 \ \cdots \ -1 \ 1)$$

Bell Value:
$$I = \overrightarrow{\beta} \cdot \overrightarrow{P}$$

Various sets of correlations

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_{L}(a, b | x, y) = \sum_{\lambda} P_{\lambda} P(a | x, \lambda) P(b | y, \lambda)$$

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_L(a, b \mid x, y) = \sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_L \le 2$$

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_L(a, b | x, y) = \sum_{\lambda} P_{\lambda} P(a | x, \lambda) P(b | y, \lambda) \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_L \leq 2$$

• Quantum mechanics (Born's rule): Quantum Set: Q

 $P_Q(a, b | x, y) = \operatorname{tr}[(M_{a|x} \otimes M_{b|y}) \rho]$

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_L(a, b | x, y) = \sum_{\lambda} P_{\lambda} P(a | x, \lambda) P(b | y, \lambda) \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_L \leq 2$$

• Quantum mechanics (Born's rule): Quantum Set: Q

$$P_Q(a, b \mid x, y) = \operatorname{tr}[(M_{a \mid x} \otimes M_{b \mid y}) \rho] \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_Q \le 2\sqrt{2}$$

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_L(a, b | x, y) = \sum_{\lambda} P_{\lambda} P(a | x, \lambda) P(b | y, \lambda) \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_L \le 2$$

• Quantum mechanics (Born's rule): Quantum Set: Q

$$P_Q(a, b \mid x, y) = \operatorname{tr}[(M_{a \mid x} \otimes M_{b \mid y}) \rho] \to I = \overrightarrow{\beta} \cdot \overrightarrow{P}_Q \le 2\sqrt{2}$$

• The non-signaling conditions: Non-signaling Set: NS

$$\sum_{b} P(a, b | x, y) = P(a | x, y) = P(a | x)$$

$$\sum_{a} P(a, b | x, y) = P(b | x, y) = P(b | y)$$

Various sets of correlations

• Local hidden-variable models: Local Set: L

$$P_L(a, b | x, y) = \sum_{\lambda} P_{\lambda} P(a | x, \lambda) P(b | y, \lambda) \rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_L \leq 2$$

• Quantum mechanics (Born's rule): Quantum Set: Q

$$P_Q(a, b \mid x, y) = \operatorname{tr}[(M_{a \mid x} \otimes M_{b \mid y}) \rho] \to I = \overrightarrow{\beta} \cdot \overrightarrow{P}_Q \le 2\sqrt{2}$$

• The non-signaling conditions: Non-signaling Set: NS

$$\sum_{b} P(a, b | x, y) = P(a | x, y) = P(a | x)$$

$$\rightarrow I = \overrightarrow{\beta} \cdot \overrightarrow{P}_{NS} \leq 4$$

$$\sum_{a} P(a, b | x, y) = P(b | x, y) = P(b | y)$$

Convex set

Non-convex set

 \overrightarrow{P}_1

Polytope

Polytope

Polytope

$$\overrightarrow{P} = \sum_{i=1}^{3} c_i \overrightarrow{P}_i, \quad \sum_{i=1}^{3} c_i = 1, \ c_i \ge 0 \ \forall i$$

Sets of correlations: $L \subsetneq Q \subsetneq NS$

Sets of correlations: $L \subsetneq Q \subsetneq NS$

Sets of correlations: $L \subsetneq Q \subsetneq NS$

When quantum boundary meets the non-signaling boundary

When quantum boundary meets the non-signaling boundary

When quantum boundary meets the non-signaling boundary

When quantum boundary meets the non-signaling boundary

$$\vec{P} = \sum_{i=1}^{8} c_i \vec{P}_i^{NL} + \sum_{j=1}^{16} d_j \vec{P}_j^{L}$$
$$\sum_{i=1}^{8} c_i + \sum_{j=1}^{16} d_j = 1, \ c_i \ge 0 \ \forall i, \ d_j \ge 0 \ \forall j$$

When quantum boundary meets the non-signaling boundary

$$\overrightarrow{P} = \sum_{i=1}^{8} c_i \overrightarrow{P}_i^{NL} + \sum_{j=1}^{16} d_j \overrightarrow{P}_j^L,$$
$$\sum_{i=1}^{8} c_i + \sum_{j=1}^{16} d_j = 1, \ c_i \ge 0 \ \forall i, \ d_j \ge 0 \ \forall j$$

			<i>x</i> =	= 0	<i>x</i> =	= 1
			0	1	0	1
$\overrightarrow{P}_{1}^{NL} \rightarrow$	$a_{i} = 0$	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
	y = 0	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0
	a — 1	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0
	<i>y</i> – 1	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$

When quantum boundary meets the non-signaling boundary

$$\overrightarrow{P} = \sum_{i=1}^{8} c_i \overrightarrow{P}_i^{NL} + \sum_{j=1}^{16} d_j \overrightarrow{P}_j^{L},$$
$$\sum_{i=1}^{8} c_i + \sum_{i=1}^{16} d_j = 1, \quad c_i \ge 0 \quad \forall i, \quad d_j \ge 0 \quad \forall j$$

$$\overrightarrow{P}_{1}^{NL} \rightarrow \begin{array}{c|c} x = 0 & x = 1 \\ 0 & 1 & 0 & 1 \\ \hline y = 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \hline y = 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \hline y = 1 & \frac{1}{2}$$

When quantum boundary meets the non-signaling boundary

$$\overrightarrow{P} = \sum_{i=1}^{8} c_i \overrightarrow{P}_i^{NL} + \sum_{j=1}^{16} d_j \overrightarrow{P}_j^L,$$
$$\sum_{i=1}^{8} c_i + \sum_{j=1}^{16} d_j = 1, \quad c_i \ge 0 \quad \forall i, \quad d_j \ge 0 \quad \forall j$$

$$\overrightarrow{P}_{1}^{NL} \rightarrow \begin{array}{c|c} x = 0 & x = 1 \\ 0 & 1 & 0 & 1 \\ y = 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ y = 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ P(0,1 | 1,1) = 0 \end{array}$$

Our Results

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

1.		x =	= 0	x =	= 1
		0	1	0	1
	$\overline{u=0}^{0}$	0			
	y = 0 1				0
	$\frac{1}{2}$				
	y = 1 1		0		

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

1.		x=0	x=1
		$\begin{vmatrix} 0 & 1 \end{vmatrix}$	0 1
	$u = 0^{0}$	0	
	y = 0 1		0
	$u = 1^{0}$		
	g = 1 1	0	
2	1		1 1
<i>L</i> .		\sim 0	1
_ •		x = 0	x = 1
		$\begin{array}{c} x = 0 \\ 0 & 1 \end{array}$	$\begin{vmatrix} x = 1 \\ 0 & 1 \end{vmatrix}$
	$\frac{1}{u=0}$	$\begin{array}{c} x = 0 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} x = 1 \\ 0 & 1 \end{array}$
	$y = 0 \begin{array}{c} 0 \\ 1 \end{array}$	x = 0 $0 1$ 0 0	$\begin{array}{c} x = 1 \\ 0 & 1 \end{array}$
	$y = 0 \begin{array}{c} 0 \\ 1 \\ \hline 0 \\ y = 1 \end{array}$	x = 0 $0 1$ 0 0	$\begin{array}{c} x = 1 \\ 0 1 \\ \end{array}$

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

# of zeros	Feasible	Infeasible
3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	others
2	others	$\begin{vmatrix} x = 0 & x = 1 \\ 0 & 1 & 0 & 1 \end{vmatrix}$ $y = 0 \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{vmatrix}$ $y = 1 \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}$
1	all	none

Why do we care about finite-dimensional maximally entangled states set?

• Hardy's nonlocality argument:

P(0,0|0,0) = 0, P(1,1|0,1) = 0

P(1,1|1,0) = 0, P(1,1|1,1) = q

• Local model: q = 0

Why do we care about finite-dimensional maximally entangled states set?

• Hardy's nonlocality argument:

P(0,0|0,0) = 0, P(1,1|0,1) = 0

 $P(1,1\,|\,1,0) = 0\,,\ P(1,1\,|\,1,1) = q$

- Local model: q = 0
- Quantum model: $q \ge 0$

Why do we care about finite-dimensional maximally entangled states set?

• Finite-dimensional maximally entangled states: q = 0

$$P_{MES}(a, b | x, y) = \operatorname{tr}[(M_{a|x} \otimes M_{b|y}) | \Psi_d \rangle \langle \Psi_d |], \quad |\Psi_d \rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d |ii\rangle$$

Why do we care about finite-dimensional maximally entangled states set?

Why do we care about finite-dimensional maximally entangled states set?

• Three zeros classes are not feasible for maximally entangled states set.

• Three zeros classes are not feasible for maximally entangled states set.

# of zeros	Feasible	Infeasible
3	none	all
2	$\begin{vmatrix} x = 0 & x = 1 \\ 0 & 1 & 0 & 1 \end{vmatrix}$ $y = 0 \begin{vmatrix} 0 & 0 & & & \\ 1 & 0 & & & \\ y = 1 \begin{vmatrix} 0 & & & \\ 1 & & & & \\ 1 & & & & \\ \end{vmatrix}$	others
1	all	none

• In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.
- Future work:
 - Trying to characterize more detail about the quantum set and maximally entangled state set.

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.
- Future work:
 - Trying to characterize more detail about the quantum set and maximally entangled state set.
 - Trying other Bell Scenarios.

Thank you for your attention!