When Quantum Boundary Meets The Non－signaling Boundary

Kai－Siang Chen ${ }^{1}$ ，Junyi Wu²，Gelo Noel M．Tabia ${ }^{1,5}$ ，Chellasamy

 Jebarathinam ${ }^{1,4}$ ，Pei－Sheng Lin ${ }^{1}$ ，Shiladitya Mal1，and Yeong－Cherng Liang1，5${ }^{1}$ Department of Physics and Center for Quantum Frontiers of Research \＆Technology （QFort），National Cheng Kung University，Tainan 701，Taiwan
${ }^{2}$ Department of Physics，Tamkang University，Tamsui，NewTaipei 251301，Taiwan
${ }^{3}$ Center for Quantum Technology，National Tsing Hua University，Hsinchu 300，Taiwan
${ }^{4}$ Center for Theoretical Physics，Polish Academy of Sciences，Aleja Lotnikow 32／46， 02－668 Warsaw，Poland
Physics Division，National Center for Theoretical Sciences，Taipei 10617，Taiwan

Outline

- Bell Nonlocality
- The Boundary of Non-signaling Polytope
- Our Results
- Summary

Bell Nonlocality

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Round	a	b	x	y
$\mathbf{1}$	0	1	1	0
2	1	1	0	0
3	1	0	0	1
4	0	1	0	0
\ldots	\ldots	\ldots	\cdots	

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Round	a	b	x	y
$\mathbf{1}$	0	1	1	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	0	0	1
$\mathbf{4}$	0	1	0	0
\ldots	\ldots	\ldots	\ldots	\ldots

Probability vector: $\vec{P}=\{P(a, b \mid x, y)\}_{a, b, x, y}=(P(00 \mid 00) \quad \cdots \quad P(11 \mid 11))$

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Round	a	b	x	y
$\mathbf{1}$	0	1	1	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	0	0	1
$\mathbf{4}$	0	1	0	0
\ldots	\ldots	\ldots	\ldots	\ldots

Probability vector: $\vec{P}=\{P(a, b \mid x, y)\}_{a, b, x, y}=(P(00 \mid 00) \quad \cdots \quad P(11 \mid 11))$ Bell Function: $\vec{\beta}=\left(\begin{array}{llllll}1 & -1 & -1 & \cdots & -1 & 1\end{array}\right)$

Bell Nonlocality

The nonlocal game: Clauser-Horne-Shimony-Holt (CHSH) scenario

Round	a	b	x	y
$\mathbf{1}$	0	1	1	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	0	0	1
$\mathbf{4}$	0	1	0	0
\ldots	\ldots	\ldots	\ldots	\ldots

Probability vector: $\vec{P}=\{P(a, b \mid x, y)\}_{a, b, x, y}=(P(00 \mid 00) \quad \cdots \quad P(11 \mid 11))$ Bell Function: $\vec{\beta}=\left(\begin{array}{llllll}1 & -1 & -1 & \cdots & -1 & 1\end{array}\right)$

Bell Value: $I=\vec{\beta} \cdot \vec{P}$

Bell Nonlocality

Various sets of correlations

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda)
$$

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I=\vec{\beta} \cdot \vec{P}_{L} \leq 2
$$

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I=\vec{\beta} \cdot \vec{P}_{L} \leq 2
$$

- Quantum mechanics (Born's rule): Quantum Set: Q

$$
P_{Q}(a, b \mid x, y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes M_{b \mid y}\right) \rho\right]
$$

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I=\vec{\beta} \cdot \vec{P}_{L} \leq 2
$$

- Quantum mechanics (Born's rule): Quantum Set: Q

$$
P_{Q}(a, b \mid x, y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes M_{b \mid y}\right) \rho\right] \rightarrow I=\vec{\beta} \cdot \vec{P}_{Q} \leq 2 \sqrt{2}
$$

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I=\vec{\beta} \cdot \vec{P}_{L} \leq 2
$$

- Quantum mechanics (Born's rule): Quantum Set: Q

$$
P_{Q}(a, b \mid x, y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes M_{b \mid y}\right) \rho\right] \rightarrow I=\vec{\beta} \cdot \vec{P}_{Q} \leq 2 \sqrt{2}
$$

- The non-signaling conditions: Non-signaling Set: NS

$$
\begin{aligned}
& \sum_{b} P(a, b \mid x, y)=P(a \mid x, y)=P(a \mid x) \\
& \sum_{a} P(a, b \mid x, y)=P(b \mid x, y)=P(b \mid y)
\end{aligned}
$$

Bell Nonlocality

Various sets of correlations

- Local hidden-variable models: Local Set: L

$$
P_{L}(a, b \mid x, y)=\sum_{\lambda} P_{\lambda} P(a \mid x, \lambda) P(b \mid y, \lambda) \rightarrow I=\vec{\beta} \cdot \vec{P}_{L} \leq 2
$$

- Quantum mechanics (Born's rule): Quantum Set: Q

$$
P_{Q}(a, b \mid x, y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes M_{b \mid y}\right) \rho\right] \rightarrow I=\vec{\beta} \cdot \vec{P}_{Q} \leq 2 \sqrt{2}
$$

- The non-signaling conditions: Non-signaling Set: NS

$$
\begin{aligned}
& \sum_{b} P(a, b \mid x, y)=P(a \mid x, y)=P(a \mid x) \\
& \sum_{a} P(a, b \mid x, y)=P(b \mid x, y)=P(b \mid y)
\end{aligned} \rightarrow I=\vec{\beta} \cdot \vec{P}_{N S} \quad \leq 4
$$

The Boundary of Non-signaling Polytope

The Boundary of Non-signaling Polytope

Convex set

Non-convex set

The Boundary of Non-signaling Polytope

Polytope

$$
\vec{P}_{2}
$$

$$
-\vec{P}_{3}
$$

The Boundary of Non-signaling Polytope

Polytope

The Boundary of Non-signaling Polytope

Polytope

$\vec{P}=\sum_{i=1}^{3} c_{i} \vec{P}_{i}, \sum_{i=1}^{3} c_{i}=1, c_{i} \geq 0 \forall i$

The Boundary of Non-signaling Polytope

 Sets of correlations: $L \subsetneq Q \subsetneq N S$Non-signaling set

The Boundary of Non-signaling Polytope

Sets of correlations: $L \subsetneq Q \subsetneq N S$

Non-signaling set

The Boundary of Non-signaling Polytope

Sets of correlations: $L \subsetneq Q \subsetneq N S$

Non-signaling set

The Boundary of Non-signaling Polytope

Sets of correlations: $L \subsetneq Q \subsetneq N S$

Non-signaling set

The inequality constraints of NS polytope:
$P(a, b \mid x, y) \geq 0 \forall a, b, x, y$

The Boundary of Non-signaling Polytope

Sets of correlations: $L \subsetneq Q \subsetneq N S$

Non-signaling set

The inequality constraints of NS polytope:
$P(a, b \mid x, y) \geq 0 \forall a, b, x, y$

On the boundary of NS polytope:
$P\left(a^{\prime}, b^{\prime} \mid x^{\prime}, y^{\prime}\right)=0$ for some $a^{\prime}, b^{\prime}, x^{\prime}, y^{\prime}$

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

- Probability inside the non-signaling set:

$$
\begin{aligned}
& \vec{P}=\sum_{i=1}^{8} c_{i} \vec{P}_{i}^{N L}+\sum_{j=1}^{16} d_{j} \vec{P}_{j}^{L} \\
& \sum_{i=1}^{8} c_{i}+\sum_{j=1}^{16} d_{j}=1, \quad c_{i} \geq 0 \forall i, \quad d_{j} \geq 0 \forall j
\end{aligned}
$$

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

- Probability inside the non-signaling set:

$$
\begin{aligned}
& \vec{P}=\sum_{i=1}^{8} c_{i} \vec{P}_{i}^{N L}+\sum_{j=1}^{16} d_{j} \vec{P}_{j}^{L}, \\
& \sum_{i=1}^{8} c_{i}+\sum_{j=1}^{16} d_{j}=1, c_{i} \geq 0 \forall i, d_{j} \geq 0 \forall j
\end{aligned}
$$

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

- Probability inside the non-signaling set:

$$
\vec{P}=\sum_{i=1}^{8} c_{i} \vec{P}_{i}^{N L}+\sum_{j=1}^{16} d_{j} \vec{P}_{j}^{L}
$$

$$
\sum_{i=1}^{8} c_{i}+\sum_{j=1}^{16} d_{j}=1, \quad c_{i} \geq 0 \forall i, \quad d_{j} \geq 0 \forall j
$$

The Boundary of Non-signaling Polytope

When quantum boundary meets the non-signaling boundary

- Probability inside the non-signaling set:

$$
\vec{P}=\sum_{i=1}^{8} c_{i} \vec{P}_{i}^{N L}+\sum_{j=1}^{16} d_{j} \vec{P}_{j}^{L}
$$

$$
\sum_{i=1}^{8} c_{i}+\sum_{j=1}^{16} d_{j}=1, \quad c_{i} \geq 0 \forall i, \quad d_{j} \geq 0 \forall j
$$

Our Results

Quantum Set

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

1.

	$x=$ 0	$\left\lvert\, \begin{gathered} x= \\ 0 \end{gathered}\right.$
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	0
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	

Quantum Set

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

1.

	$x=0$ 0	$x=1$ 0
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	0
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	

2.

	$x=0$ 0	$x=1$ 0
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0 0	
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$		0

Quantum Set

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

2.

	$x=0$ 0	$x=1$ $0 \quad 1$
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	0
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	
	$x=0$ 0	$x=1$ 0
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$		0

Quantum Set

- The maximal number of zeros is three.
- For three zeros cases, there are two feasible classes:

Quantum Set

\# of zeros	Feasible	Infeasible
3	(others
2	others	
1	all	none

Maximally Entangled States Set

Why do we care about finite-dimensional maximally entangled states set?

- Hardy's nonlocality argument:

$$
\begin{aligned}
& P(0,0 \mid 0,0)=0, P(1,1 \mid 0,1)=0 \\
& P(1,1 \mid 1,0)=0, P(1,1 \mid 1,1)=q
\end{aligned}
$$

- Local model: $q=0$

Maximally Entangled States Set

Why do we care about finite-dimensional maximally entangled states set?

- Hardy's nonlocality argument:

$$
\begin{aligned}
& P(0,0 \mid 0,0)=0, P(1,1 \mid 0,1)=0 \\
& P(1,1 \mid 1,0)=0, P(1,1 \mid 1,1)=q
\end{aligned}
$$

- Local model: $q=0$
- Quantum model: $q \geq 0$

Maximally Entangled States Set

Why do we care about finite-dimensional maximally entangled states set?

- Hardy's nonlocality argument:

$$
\begin{aligned}
& P(0,0 \mid 0,0)=0, P(1,1 \mid 0,1)=0 \\
& P(1,1 \mid 1,0)=0, P(1,1 \mid 1,1)=q
\end{aligned}
$$

- Local model: $q=0$
- Quantum model: $q \geq 0$

- Finite-dimensional maximally entangled states: $q=0$

$$
P_{M E S}(a, b \mid x, y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes M_{b \mid y}\right)\left|\Psi_{d}\right\rangle\left\langle\Psi_{d}\right|\right], \quad\left|\Psi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i i\rangle
$$

Maximally Entangled States Set

Why do we care about finite-dimensional maximally entangled states set?

Maximally Entangled States Set

Why do we care about finite-dimensional maximally entangled states set?

Maximally Entangled States Set

- Three zeros classes are not feasible for maximally entangled states set.

1.

$\left.\begin{array}{|c|c|c|c|}\hline & x=0 & x=1 \\ & & 0 & 1\end{array}\right)$
2.

		$x=0$		$x=1$	
		0	1	0	

Maximally Entangled States Set

- Three zeros classes are not feasible for maximally entangled states set.

1.

	$\begin{gathered} x=0 \\ 0 \quad 1 \end{gathered}$	$\begin{gathered} x=1 \\ 0 \end{gathered}$
$y=0 \begin{aligned} & 0 \\ & 1\end{aligned}$	0	0
$y=1 \begin{aligned} & 0 \\ & 1\end{aligned}$		

Maximally Entangled States Set

Summary

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.

Summary

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.

Summary

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.
- Future work:
- Trying to characterize more detail about the quantum set and maximally entangled state set.

Summary

- In CHSH scenario, certain classes of boundaries of non-signaling set can indeed be achieved by quantum mechanics.
- For the finite-dimensional maximally entangled states set, some of the non-signaling boundaries can't be achieved anymore.
- Future work:
- Trying to characterize more detail about the quantum set and maximally entangled state set.
- Trying other Bell Scenarios.

Thank you for your attention!

