

W. J. Lin *et al.* arXiv:2012.15084 (2021)

Deterministic loading of microwaves onto an artificial atom using a time-reversed waveform

許耀銓 Io-Chun, Hoi

QE L

Department of Physics National Tsing Hua University, Taiwan

Quantum node:

Generating, processing, routing, storing, reading out quantum information.

Quantum channel: Distributing quantum information.

Enabling large scale quantum computing and quantum communication.

Telecom photons to distribute quantum information Quantum node: superconducting circuits Microwave-optical interface is needed

Moritz Forsch *et al.* Nature Physics **16**, 69 (2020) Mechanical oscillator R.W. Andrews *et al.* Nature Physics **10**, 321 (2014) Membrane MW and optical resonator

Hybrid Quantum Network

Quantum network require efficient loading quantum information on to a quantum node.

Efficient loading photons on to a qubit?

Transmon weakly coupled to 1D transmission line

Atomic Ensemble: Zhang *et al.* PRL 109, 263601 (2012) efficiency of 20% Single atom: Leong *et al.* Nature Com. 7, 13716 (2016) 3D Cavity: Liu *et al.* PRL 113, 133601 (2014) 1D Cavity: Wenner *et al.* PRL 112, 210501 (2014)

Io-Chun Hoi

transmon 300um line

Measured at NTHU

Continuous wave

Sample	E_C/h [MHz]	E_J/h [GHz]	E_J/E_C	$\omega_{10}/2\pi$ [GHz]	$\Gamma/2\pi$ [MHz]	$\Gamma_{\phi}/2\pi$ [MHz]	$\gamma/2\pi$ [MHz]	$T_2[ns]$
1	385	8.9	23	4.8514	1.686 ± 0.007	0.113 ± 0.009	0.956 ± 0.005	166 ± 1
2	200	15.7	78	4.8187	2.046 ± 0.003	0.031 ± 0.004	1.054 ± 0.003	151 ± 0.4

Exponential rising pulse excitation at constant N

Constant photon number <N> ~ 0.09 photon

 $V_{off} = V_{in}$

 t_0 : Turn off the pulse

Exponential rising pulse excitation at constant N

Sweep characteristic time τ

Constant photon number <N> ~ 0.09 photon

Perfect mode matching (destructive interference between incoming field and the emitted field)

Io-Chun Hoi

Sample 1

Sweep characteristic time τ

Constant photon number <N> ~ 0.09 photon

Perfect mode matching (destructive interference between incoming field and the emitted field)

Io-Chun Hoi

Sample 1

Definition of loading efficiency and symmetry factor

國立情華大學

NATIONAL TSING HUA UNIVERSITY

$$E_{\text{off}} \sim \int_{t_i}^{t_0} \left[\left| V_{\text{off}}(t) \right| - \left| V_N \right| \right]^2 dt$$

 V_N : Noise level

Definition of loading efficiency and symmetry factor

國立情華大學

NATIONAL TSING HUA UNIVERSITY

$$\begin{split} E_{\text{off}} &\sim \int_{t_i}^{t_0} [|V_{\text{off}}(t)| - |V_N|]^2 dt \\ E_{\text{on}} &\sim \int_{t_0}^{t_f} [|V_{\text{on}}(t)| - |V_N|]^2 dt \end{split} \qquad \eta = E_{\text{on}}/E_{\text{off}} \end{split}$$

Io-Chun Hoi

 V_N : Noise level

Definition of loading efficiency and symmetry factor

國立情華大學

VAL TSING H

Loading efficiency (Energy of emitted wave divided by energy of incoming wave):

$$\begin{split} E_{\text{off}} &\sim \int_{t_i}^{t_0} [|V_{\text{off}}(t)| - |V_N|]^2 dt \\ E_{\text{on}} &\sim \int_{t_0}^{t_f} [|V_{\text{on}}(t)| - |V_N|]^2 dt \end{split} \qquad \eta = E_{\text{on}} / E_{\text{off}} \end{split}$$

Symmetry factor (correlation of incoming wave and time-reversed of emitted wave):

$$S = \frac{\int_{t_i}^{t_0} [|V_{\text{off}}(t)| - |V_N|] [|V_{\text{on}}(2t_0 - t)| - |V_N|] dt}{\int_{t_i}^{t_0} [|V_{\text{off}}(t)| - |V_N|]^2 dt}$$

 V_N : Noise level

Exponential rising pulse excitation at constant $\tau \approx T_2$

國立情華大學

NATIONAL TSING HUA UNIVERSIT

Io-Chun Hoi Blue: Saturation of two level atom

Sweep amplitude A

Sweep amplitude A

國立情華大學

NATIONAL TSING HUA UNIVERSITY

Loading efficiency and symmetry factor versus Photon Number $(\tau \approx T_2)$

Deterministic loading of microwaves

Exponential decay, Square and Gaussian pulse, where N=0.005 Sample 1

Conclusion

Using weak exponential rising waveform coherent state, whose time constant matches the decoherence time of an artificial atom, we demonstrate deterministic loading efficiency (96.5%) from one dimensional semi free space to a single artificial atom. The high loading efficiency is due to time-reversal symmetry: the overlap between the incoming wave and the time-reversed emitted wave.

W. J. Lin et al. arXiv:2012.15084 (2021)

Future work

Quantum memory

Store quantum information in the qubit and retrieve at a later time

Quantum memory comparison

Advantages:

- 1. Simple. Only one DC current, switch between I/O mode and storage mode.
- 2. Possibly storage efficiency (>90%) and storage time about 20us.

Compare to

Yunfei Wang et al. Nature Photonics 13, 346 (2019)

Storage efficiency 85% using electrogmagnetically induced transparency in Rubidium atoms, storage time about 5us.

Dilution fridges

Max 50 Coax cables

Max 200 Coax cables

Basic measurement Instruments

Current source:

Arbitrary microwave Generator:

Frequency standard

Fast digitizer card

Vector Network Analyzer

IQ modulation RF source

Experimental Setup

Fabrication of Transmon in transmission line

Big structure: Photolithrography 10um (Transmission line, ground, flux line) Small structure: Ebeam lithrography 100nm (Josephson junction, Transmon) Two layers: Alignment is needed.

100nm

Loop size 3um*4um

Al evaporation and Josephson Junction

Au evaporation with E-Gun System

Fab facilities

Photolithography

清大奈材中心

台灣半導體研究中心

O2 plasma

Acknowledgement

Deterministic loading of microwaves onto an artificial atom using a time-reversed waveform

W.-J. Lin,^{1,*} Y. Lu,^{2,†} P. Y. Wen,^{3,*} Y.-T. Cheng,¹ C.-P. Lee,¹ K.-T. Lin,⁴ K.-H. Chiang,⁵ M. C. Hsieh,¹ C.-Y. Chen,¹ C.-H. Chien,¹ J.-J. Lin,¹ J. C. Chen,^{1,6} C.-S. Chuu,^{1,6} F. Nori,^{7,8} A. F. Kockum,² G.-D. Lin,^{4,9} P. Delsing,² and I.-C. Hoi^{1,6,‡}

W.-J. Lin was an research assistant. Now he is PhD student at University of Maryland.

Y. Lu is a PhD student at Chalmers.

P. Y. Wen is an assistant professor at Chung Cheng University.

Y.-T. Cheng is PhD student in my Lab.

Quantum Engineering Laboratory

Thanks for your attention!