Single-qubit quantum agent in quantum reinforcement learning variational quantum circuit for proximal policy optimization

Outline

Motivation

Introduction to the Quantum reinforcement learning

Related works

Research results

Conclusion and open issues

Motivation

Why investigate Quantum Reinforcement Learning (QRL)?

Quantum Computation

Classical Reinforcement learning (Powerful for specific problems)

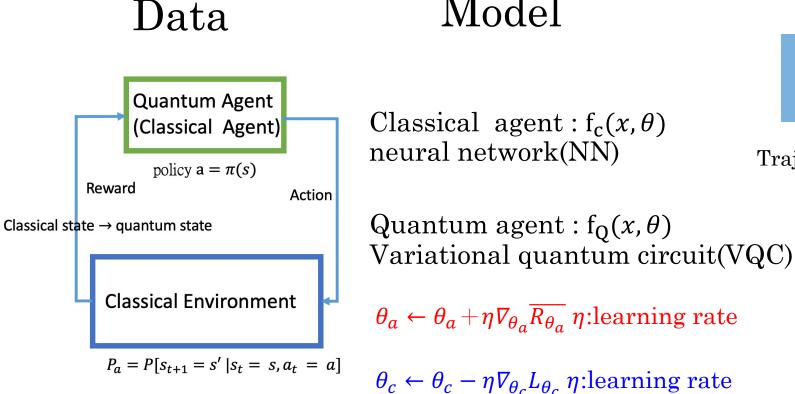
Variational quantum circuit (Emerging field)

Quantum Reinforcement learning

Introduction to the Variational quantum circuit (VQC)

Elements of hybrid quantum machine learning Loss function Data Model **Classica**l Optimization Classical data $\theta \leftarrow \theta - \eta \nabla_{\theta} L$ x: input classical data η :learning rate 0> x: input classical data Quantum 10> U(0) U(x) model : VQC 0> 0> 10> 0>:initial sate Read-in VQC part Read-out 0> θ : VQC parameters U(θ) U(x) a < Z > +bLoss function 0> x: classical data 0> 0>:initial sate VQC part Read-out Read-in Classical Scaling output θ : VQC parameters model : NN Quantum part Classical part 6

Elements of hybrid quantum reinforcement learning



Model

Classical agent : $f_c(x, \theta)$ neural network(NN)

Loss function

$$\overline{R_{\theta}} = \sum_{\tau} R(\tau) p_{\theta}(\tau) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [R(\tau)]$$

Train it!!! Trajectory: $\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$ in one episode

 $\nabla \overline{R_{\theta}} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log p_{\theta}(a_{t}^{n} | s_{t}^{n})$

t=1~T # of steps in one episode $n=1 \sim N \# of episode$

Policy gradient : $L = -p_{\theta}(a_t^n | s_t^n) * R(\tau^n)$ Actor-Critic: Actor L = $-p_{\theta}(a_t^n | s_t^n) * A(s)$. Critic L = $\frac{1}{N} (R(\tau^n) - V_{\theta}(s))^2$, $A(s) = R(\tau^n) - V_{\theta}(s)$.

PPO actor L = -min(clip * A(s), ratio * A(s))**PPO** critic L = $\frac{1}{N} (R(\tau^n) - V_{\theta'}(s))^2 (MSE)$

$$\mathsf{Clip} = (\mathsf{ratio} = \frac{p_{\theta}(a_t^n | s_t^n)}{p_{\theta_{old}}(a_t^n | s_t^n)}, 1 + \epsilon, 1 - \epsilon) \operatorname{Ratio} = \frac{p_{\theta}(a_t^n | s_t^n)}{p_{\theta_{old}}(a_t^n | s_t^n)}$$

Related works

OpenAI gym environment: CartPole-v0 (v1)

• Agent : Cart control

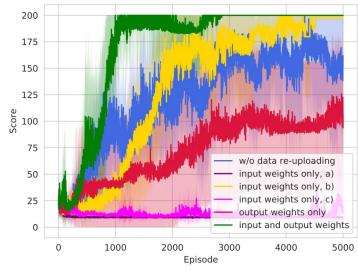
https://gym.openai.com/

- State : [Cart Position x , Cart Velocity v, Pole Angle θ , Pole Angular Velocity ω]
- Action : left or right
- Reward : Reward is 1 for every step taken, including the termination step

Episode Termination:

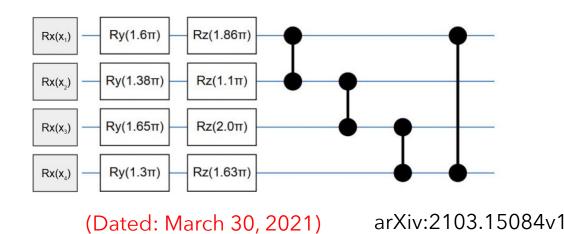
- 1. Pole Angle is more than 12 degrees(0.209).
- 2. Cart Position is more than 2.4 or -2.4
- 3. episode length is greater than 200 or 500.
- 4. Solved Requirements: Considered solved when the average return is greater than or equal to 195.0(475.0) over 100 consecutive trials.

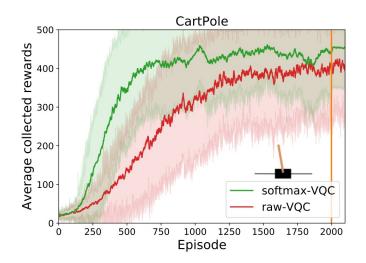
Related works : VQC method for RL's problems



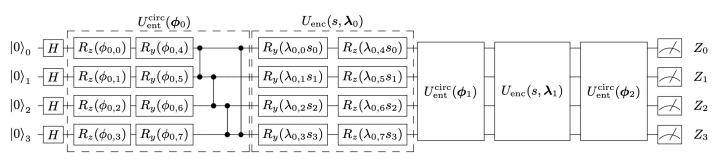
(a) average scores with varying trainable weights

A. Skolik, S. Jerbi, and V. Dunjko ,Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning





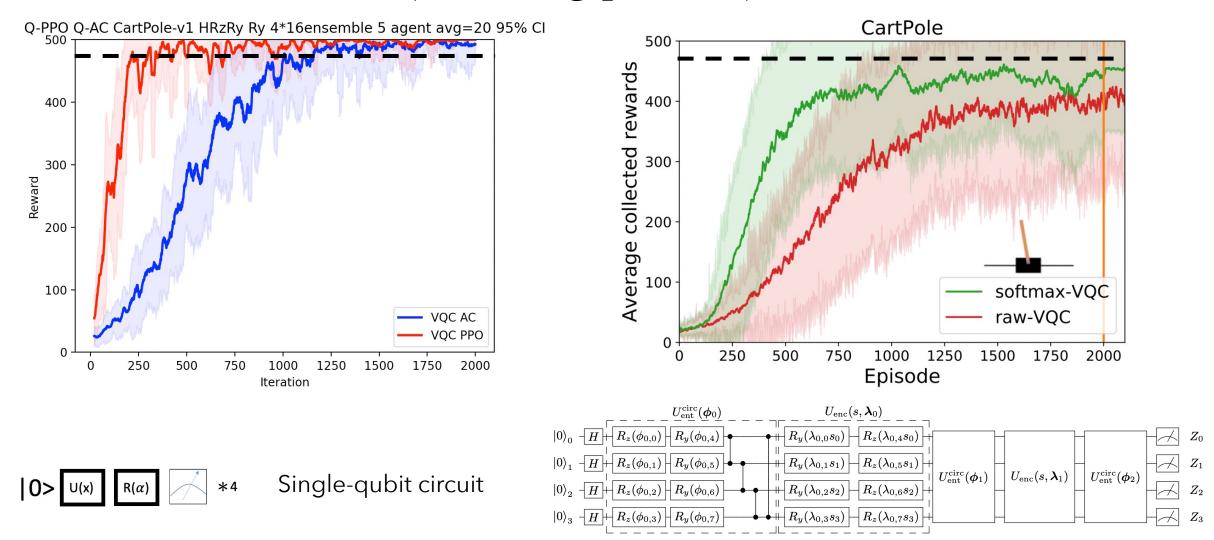
S. Jerbi, C. Gyurik, S. Marshall, H. J. Briegel, and V. Dunjko, Variational quantum policies for reinforcement learning



(Dated: March 10, 2021) arXiv:2103.05577v1

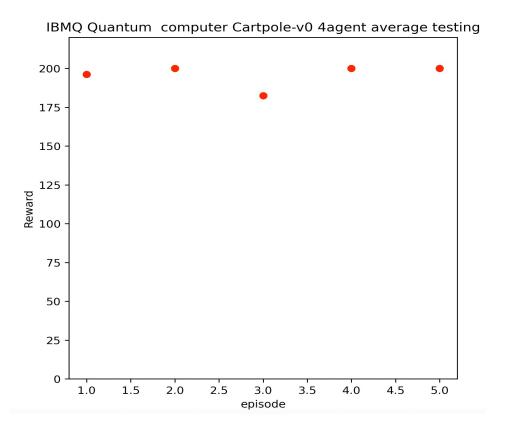
Research results

Implementation on classical computer (Training process)



Implementation on IBM Quantum Computer (Testing Process)

CartPole-v0



First successful implementation on the real quantum device for complex RL's problem in gym with the VQC model

Conclusion and open issues

1. Single-qubit quantum agent has good performance on specific problems.

2. How would we use the entanglement's power with the VQC methods in quantum reinforcement learning ? Or quantum machine learning ?

3. How would we implement more complex problems by the VQC model ?

Thank you for your attention