Modified Belief-Propagation Decoder Exploiting the Degeneracy of Quantum Surface Codes

(an extended work of DOI:10.1109/JSAIT.2020.3011758)

Kao-Yueh Kuo and Ching-Yi Lai

Institute of Communications Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

August, 2020

<u>Kao-Yueh Kuo</u> and Ching-Yi Lai (Institute oModified Belief-Propagation Decoder Exploiti

Outline

- 2 Stabilizer Codes and BP Decoding
- **3** Simulation Results

< 行

Sparse Quantum Codes

- Quantum states are very sensitive.
- Techniques similar to classical error-correction can be used for protection
- Stabilizer codes is a major class of quantum error-correcting codes
 - A stabilizer code is the fixed subspace of a set of Pauli operators.
 - An operator is called sparse if it has a low weight

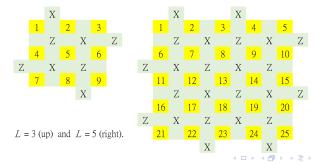
* e.g., $I \otimes I \otimes I \otimes X \otimes I \otimes Z$ has a weight 2.

- Stabilizer codes defined by sparse Pauli operators have good performance and low encoding/decoding complexity.¹
- Topological codes (due to Kitaev): toric codes, surface codes, etc.
 - suitable for superconducting implementation
 - based on local measurements
 - every operator's weight ≤ 4 (independent of the code length)

¹There are other sparse quantum codes, as discussed in the JSAIT paper. Here we focus on surface codes.

Surface Codes

- A surface code encodes 1 information qubit by $N = L^2$ qubits.
- There are M = N 1 (projective) measurement operators.
- The most small surface code has 9 qubits (LHS figure):
 - A yellow box is a qubit.
 - ► The label X between qubits 1, 2 represents $X_1X_2 = X \otimes X \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I$
 - ► The label Z between qubits 1, 2, 4, 5 represents $Z_1Z_2Z_4Z_5 = Z \otimes Z \otimes I \otimes Z \otimes Z \otimes I \otimes I \otimes I \otimes I$
 - and so on



Some Decoding Strategies

- $\mathit{N}:$ the code length. (Given the measurement results:)
 - **Minimum-weight matching** (MWM) finds a valid error with *minimum-weight*,² for decoding topological codes
 - with a complexity $O(N^2)$ after simplification
 - **Renormalization group** (RG) algorithm decodes topological codes by treating them as *concatenated codes* (divide and conquer)
 - with a complexity $\propto N \log(\sqrt{N})$
 - Belief Propagation (BP) is an efficient & powerful algorithm used in coding and AI communities (due to Gallager and Pearl)
 - can be used to decode any sparse codes
 - with a complexity $O(Nj\tau)$, which could be nearly linear in N, so we are interested in this algorithm
 - \star *j* is the mean column-weight of the check matrix: due to sparsity,
 - $j \ll N$ or even fixed, e.g. $j \leq 4$ for toric/surface codes
 - * τ is the average number of iterations, with $\tau = O(\log \log N)$.³

² "minimum-weight" is optimal in the classical sense before considering the quantum degeneracy.

BP Decoding of Quantum Codes

Some BP issues for decoding quantum codes:

- Performance: a stabilizer check matrix has many **short cycles**, which affect the decoding convergence & degrade the decoding performance.
- Complexity: handling I, X, Y, Z needs a quaternary **BP** (BP₄).
 - ▶ It is 16 times complex than the classical **binary BP** (BP₂).

Our approach:

• Refine and Modify

Outline

3 Simulation Results

< 行

Stabilizer Code and Check Matrix

- An [[N, K]] stabilizer code is a 2^K-dim. subspace in C^{2^N} that is the common (+1)-eigenspace of a stabilizer group S, where:
 S is a commutative subgroup of the N-fold Pauli group {±1,±i} × {I, X, Y, Z}^{⊗N} such that S has N K independent generators and -I^{⊗N} ∉ S.
- We can construct an $M \times N$ check matrix by $M \ge N K$ operators. (M = N - K if we only choose independent generators.)
- For example:

if \mathcal{S} is generated by $X\otimes Y\otimes I$ and $Z\otimes Z\otimes Y$,

then
$$S = \begin{bmatrix} X & Y & I \\ Z & Z & Y \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \end{bmatrix} = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$
.

• $S = \{III, XYI, ZZY, YXY\}$ is the (productive) rowspace of S.

The Encoding/Decoding Scenario

 $\bullet\,$ There is an Enc_Proc associated with S, and if we assume a noisy Pauli channel:4

$$K \text{ qubits } \xrightarrow{\text{Enc_Proc}} \rho (N \text{ qubits}) \xrightarrow{\text{Pauli ch.}} \mathcal{E}(\rho)$$

subject to an unknown error $E = E_1 E_2 \dots E_N \in \{I, X, Y, Z\}^N$.

• Measurement (by S) and Decoding:

 $\begin{array}{c} \mathcal{E}(\rho) \xrightarrow{\text{meas. by } S} z \ (M \text{ syndrome bits}) \xrightarrow{\text{decoder}} \hat{E} \ (\text{to apply to } \mathcal{E}(\rho)) \\ (\text{post-measurement state is still } \mathcal{E}(\rho).) \end{array}$

such that $\hat{E} \in E\mathcal{S}$ with a probability as higher as possible.

• Unlike classical error-correction that needs $\hat{E} = E$, here it needs to maximize the probability $\hat{E} \in ES$ due to degeneracy.⁵

- ⁵• Maximizing $P(\hat{E} = E)$ was shown to be NP-hard.
 - Maximizing $P(\hat{E} \in ES)$ was also shown to be NP-hard, on even that #P that #P

⁴This is sufficient according to the error discretization theorem.

The Binary Syndrome

• The syndrome $z = (z_1, z_2, ..., z_M) \in \{0, 1\}^M$ is a binary vector such that the *m*-th syndrome bit satisfies

$$z_m = \sum_{n=1}^N \langle E_n, S_{mn} \rangle \mod 2$$

which indicates whether the unknown E and the m-th stabilizer S_m commute $(z_m = 0)$ or anticommute $(z_m = 1)$.

• Since E has $4^N = 2^{2N}$ possibilities, this is a bit like solving an Ising Model with 2N variables and M constraints.

Table: Commutation Relations of Pauli Operators (0: commute, 1: anticommute)

$\langle E_n, F_n \rangle$	$F_n = I$	$F_n = X$	$F_n = Y$	$F_n = Z$
$E_n = I$	0	0	0	0
$E_n = X$	0	0	1	1
$E_n = Y$	0	1	0	1
$E_n = Z$	0	1	1	0

BP: Message Passing on Tanner Graph

• BP decoding is an iterative **message-passing** algorithm run on a bipartite graph (called **Tanner graph**) defined by *S*.

• BP₄ starts with an initial belief (for the error in each qubit)

$$m{p}_n=(p_n^I,p_n^X,p_n^Y,p_n^Z)~~(ext{e.g.}=(1-\epsilon,rac{\epsilon}{3},rac{\epsilon}{3},rac{\epsilon}{3})~ ext{for a depolarizing ch.})$$
 (1)

(given S and z) to compute an updated belief

$$\boldsymbol{q}_n = (q_n^I, q_n^X, q_n^Y, q_n^Z)$$
⁽²⁾

and infer $\hat{E}_n = \arg \max_{W \in \{I, X, Y, Z\}} q_n^W$.

Original BP₄: (every message is a vector)

• To complete the 1st iteration:

variable node n passes to check node m the message $\boldsymbol{q}_{n \rightarrow m} = (q_{mn}^{I}, q_{mn}^{X}, q_{mn}^{Y}, q_{mn}^{Z}) = \boldsymbol{p}_{n},$ and check node m passes to variable node n the message $\boldsymbol{r}_{m \to n} = (r_{mn}^{I}, r_{mn}^{X}, r_{mn}^{Y}, p_{mn}^{Z})$, with $r_{mn}^{W} = \sum_{E|_{\mathcal{N}(m)}: E_n = W,} \left(\prod_{n' \in \mathcal{N}(m) \setminus n} q_{mn'}^{E_{n'}}\right)$ $\langle E|_{\mathcal{M}(m)}, S_m|_{\mathcal{M}(m)} \rangle = z_m$ for $W \in \{I, X, Y, Z\}$, where $\mathcal{N}(m) = \{n \mid S_{mn} \neq I\}$. • For any next iteration, $q_{n \rightarrow m} = (q_{mn}^I, q_{mn}^X, q_{mn}^Y, q_{mn}^Z)$ with $q_{mn}^W \propto p_n^W \qquad \prod \qquad r_{m'n}^W$ $m' \in \mathcal{M}(n) \setminus m$ where $\mathcal{M}(n) = \{m \mid S_{mn} \neq I\}.$ • To infer \hat{E}_n is by $\boldsymbol{q}_n = (q_n^I, q_n^X, q_n^Y, q_n^Z)$ with $q_n^W = p_n^W \prod_{m \in \mathcal{M}(n)} r_{mn}^W$

Refine and Modify the Algorithm

To refine: (to have a lower complexity)

- An observation: $\langle E_1, S_{m1} \rangle = z_m + \sum_{n=2}^N \langle E_2, S_{mn} \rangle \mod 2$
 - In other words, the message from a neighboring check will tell us more likely whether the error E_1 commutes or anti-commutes with S_{m1}
- We derived a refined algorithm by, e.g., if $S_{mn} = X$, then passing $d_{n \to m} = (q_{mn}^I + q_{mn}^X) (q_{mn}^Y + q_{mn}^Z)$ is sufficient for computation.
- Every message becomes a scalar, and the check-node efficiency is 16 times improved.

To modify: (to have improved performance)

- A stabilizer check matrix has many **short cycles**, which cause the *wrong belief worsely propagated* in the decoding network.
- We modify the algorithm by introducing a parameter α_i .
 - to suppress the wrong belief,
 - ► to create inhibition between nodes.⁶

 $^{^{6}}$ BP is like a recurrent neural network (RNN)—inhibition between nodes enhances the perception capability, as found for a Hopfield net (network with symmetric connections).

Refined BP₄, with Modification by α_i

- The most high-complexity step is refined.
- The computation in (3) and (4) is modified for performance improvement.

(The nonlinear function can be efficiently implemented by Schraudolph's approximation)

Algorithm 1 : Quaternary BP (BP₄) with message normalization and inhibition between nodes controlled by α_i . **Input:** $S \in \{I, X, Y, Z\}^{M \times N}$, $\{p_n = (p_n^I, p_n^X, p_n^Y, p_n^Z)\}_{n=1}^N$, target $z \in \{0, 1\}^M$, and a real parameter α_i . **Initialization.** For n = 1, 2, ..., N and $m \in \mathcal{M}(n)$, let $d_{n \to m} = q_{n \to m}^{(0)} - q_{n \to m}^{(1)},$ where $q_{n \to m}^{(0)} = p_n^I + p_n^{S_{mn}}$ and $q_{n \to m}^{(1)} = 1 - q_{n \to m}^{(0)}$. **Horizontal Step.** For $m = 1, 2, \ldots, M$ and $n \in \mathcal{N}(m)$. compute $\delta_{m \to n} = (-1)^{z_m} \qquad \prod \qquad d_{n' \to m},$ $n' \in \mathcal{N}(m) \setminus n$ Vertical Step. For n = 1, 2, ..., N and $m \in \mathcal{M}(n)$, do: • Compute $r_{m \to n}^{(0)} = \left(\frac{1 + \delta_{m \to n}}{2}\right)^{1/\alpha_i}, \ r_{m \to n}^{(1)} = \left(\frac{1 - \delta_{m \to n}}{2}\right)^{1/\alpha_i},$ (3) $q_{n \to m}^{I} = p_{n}^{I} \qquad \prod \qquad r_{m' \to n}^{(0)},$ $m' \in \overline{\mathcal{M}(n)} \setminus n$ $q_{n \to m}^{W} = p_n^{W} \qquad \prod \qquad r_{m' \to n}^{\langle W, S_{m'n} \rangle}, \text{ for } W \in \{X, Y, Z\}.$ $m' \in \mathcal{M}(n) \setminus m$

• Let

$$\begin{split} q_{n \to m}^{(0)} &= a_{mn} \left(q_{n \to m}^{I} + q_{n \to m}^{S_{mn}} \right) / \left(\frac{1 + \delta_{m \to n}}{2} \right)^{1 - 1/\alpha_i}, \\ q_{n \to m}^{(1)} &= a_{mn} \left(\sum_{W'} q_{n \to m}^{W'} \right) / \left(\frac{1 - \delta_{m \to n}}{2} \right)^{1 - 1/\alpha_i}, \end{split}$$

where $W' \in \{X, Y, Z\} \setminus S_{mn}$ and a_{mn} is a chosen scalar such that $q_{n \to m}^{(0)} + q_{n \to m}^{(1)} = 1$. • Update: $d_{n \to m} = q_{n \to m}^{(0)} - q_{n \to m}^{(1)}$.

Hard Decision. For n = 1, 2, ..., N, compute

$$\begin{split} q_n^I &= p_n^I \prod_{m \in \mathcal{M}(n)} r_{mn}^{(0)} \\ q_n^W &= p_n^W \prod_{m \in \mathcal{M}(n)} r_{mn}^{(W,S_{mn})}, \text{ for } W \in \{X,Y,Z\}. \end{split}$$

Let $\hat{E}_n = \arg \max_{W \in \{I, X, Y, Z\}} q_n^W$.

• Let
$$\hat{E} = \hat{E}_1 \hat{E}_2 \cdots \hat{E}_N$$
.

- If $\langle \hat{E}, S_m \rangle = z_m$ for m = 1, 2, ..., M, halt and return "SUCCESS";
- otherwise, if a maximum number of iterations is reached, halt and return "FAIL";

イロト 不得 トイヨト イヨト

- otherwise, repeat from the horizontal step.

The Parameter α_i

Two features:

- Against short cycles: original BP will decouple the $n \rightarrow m$ message and the $m \rightarrow n$ message that are passed on the same edge.
 - This is suitable for the case of less short cycles; here we need a different strategy.
 - Introducing α_i (especially in (4)) breaks the decoupling rule and creates strong memory effect at check-node side (fed back from variable-node side).
- Flexibility (assume $\alpha_i > 0$):
 - ► a larger α_i > 1 corresponds to a careful (smaller-step) search with stronger memory at check-node side,
 - ► a smaller \(\alpha_i < 1\) corresponds to an aggregate (larger-step) search with weaker memory at check-node side.

Outline

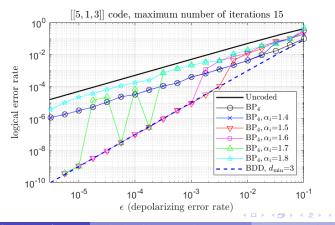
2 Stabilizer Codes and BP Decoding

3 Simulation Results

4 Conclusion

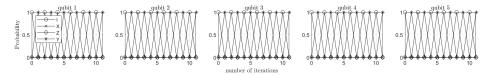
The famous five-qubit code, $[[N = 5, K = 1, d_{min} = 3]]$

- This code has $S = \begin{bmatrix} X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \end{bmatrix}$, and can correct any weight-one errors.
 - ▶ BP₄ without α_i (or say $\alpha_i = 1$) cannot correct the error *IIIYI*.
 - BP₄ with $\alpha_i \approx 1.5$ successfully corrects any weight-one errors.
- The logical error rate (the lower the better) at different ϵ :

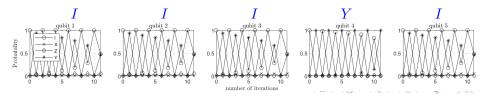


How variable nodes converge (for decoding *IIIYI* at $\epsilon = 0.003$) $q_n = (q_n^I, q_n^X, q_n^Y, q_n^Z)$ is the local observation of variable node n. We can normalize it as a distribution and plot it (for each qubit when the iteration increases):

• Without α_i , the trajectory of each q_n , n = 1, 2, 3, 4, 5, keeps oscillating:



• With $\alpha_i = 1.5$, it slowly suppress the wrong belief to converge correctly:

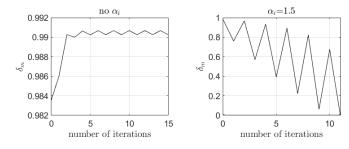


Kao-Yueh Kuo and Ching-Yi Lai (Institute oModified Belief-Propagation Decoder Exploiti

How check nodes converge (for decoding *IIIYI* at $\epsilon = 0.003$)

We can define an observation δ_m for each check node m:

- By the previous \boldsymbol{q}_n , let $\hat{q}_{nm}^{(0)} = q_n^I + q_n^{S_{mn}}$ and $\hat{q}_{nm}^{(1)} = 1 \hat{q}_{nm}^{(0)}$.
- Define $\delta_m \triangleq \prod_{n \in \mathcal{N}(m)} (\hat{q}_{nm}^{(0)} \hat{q}_{nm}^{(1)})$ and plot its trajectory: (IIIYI causes all $z_m = 1$ and the same trajectory $\delta_m \forall m$ with a target $\delta_m < 0$)



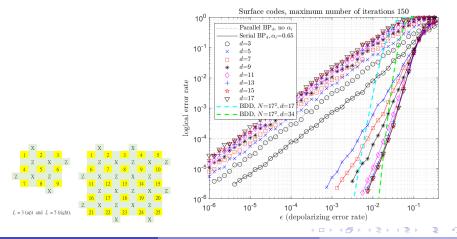
(a) without α_i (note: the swing is very tiny). (b) with $\alpha_i = 1.5$.

Recall that α_i introduces memory-effect:

- This is like a simplified long short-term memory (LSTM) method,
- or can be understood as: BP is able to utilize the **momentum**.

Surface Codes, $[[N = L^2, K = 1, d = L]]$

- The code structure has strong symmetry: using a serial update schedule helps (known from Hopfield nets).
- The decoder output is usually trapped near origin: we need an $\alpha_i < 1$.
- We plot the decoding logical error rate (the lower the better):



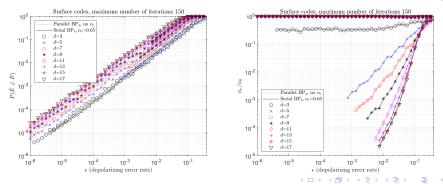
The improvement is from exploiting the degeneracy

• Write the logical error rate as:

$$P(\hat{E} \notin ES) = P(\hat{E} \notin ES, \hat{E} \neq E)$$
$$= P(\hat{E} \neq E) \times P(\hat{E} \notin ES \mid \hat{E} \neq E) = \frac{n_0}{n} \times \frac{n_e}{n_0}$$

• We plot $\frac{n_0}{n}$ and $\frac{n_e}{n_0}$ (both the lower the better, and the lower $\frac{n_e}{n_0}$ means the more the decoder exploits the degeneracy):

Two schemes have similar $P(\hat{E} \neq E) = \frac{n_0}{n}$.

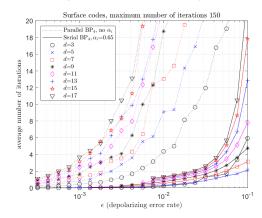


Kao-Yueh Kuo and Ching-Yi Lai (Institute oModified Belief-Propagation Decoder Exploiti

The proposed scheme has a much lower $\frac{n_e}{n_0}$.

The convergence behavior

 How well the algorithm converges can be evaluated by the average number of iterations (the lower the better (smaller complexity)):



• The improvement is achieved by better algorithm convergence, rather than paying complexity at doing more iterations.

Outline

1 Introduction

2 Stabilizer Codes and BP Decoding

3 Simulation Results

< 冊 > < Ξ

Conclusion and Future Work

Conclusion:

- We refine the BP₄ decoding of quantum codes to have a lower complexity.
- We modify the refined BP₄ to have adjustable step-size and inhibition strength, controlled by one parameter α_i .
- \bullet We simulate the decoding of the $\left[\left[5,1,3\right] \right]$ code and surface codes.
- The proposed BP scheme exploits the degeneracy and significantly improves the performance.
- The improvement comes from better algorithm convergence, resulting in very low average numbers of iterations.

Future work:

• To further improve for the $d \ge 15$ surface codes.

Main References

R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT Press, 1963.

- D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," *IEEE Trans. Inf. Theory*, vol. 45, pp. 399–431, 1999.
- R. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf. Theory, vol. 27, pp. 533-547, 1981.
- J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, 1988.

- A. Y. Kitaev, "Fault-tolerant quantum computation by anyons," Ann. Phys., vol. 303, pp. 2–30, 2003.
- D. Poulin and Y. Chung, "On the iterative decoding of sparse quantum codes," *Quantum Inf. Comput.*, vol. 8, pp. 987–1000, 2008.

- K.-Y. Kuo and C.-Y. Lai, "Refined belief propagation decoding of sparse-graph quantum codes," accepted by *IEEE J.* Sel. Areas Inf. Theory, 2020. (DOI:10.1109/JSAIT.2020.3011758)
- J. J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons," *Proc. Nat. Acad. Sci.*, vol. 81, pp. 3088–3092, 1984.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
- I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," in *Proc. Int. Conf. Mach. Learn.*, 2013, pp. 1139–1147.
- N. N. Schraudolph, "A fast, compact approximation of the exponential function," *Neural Comput.*, vol. 11, no. 4, pp. 853–862, 1999.

< □ > < □ > < □ > < □ > < □ > < □ >