Quantum computing with trapped ions

Jonathan Home Institute for Quantum Electronics, ETH Zürich

European Research Council Established by the European Commission

Trapped ions

 $V_{
m static}({f r})+\Phi_{
m RF}({f r})$

Ponderomotive potential (change of rapid kinetic motion with position)

Room temperature

Radio-frequency ion traps

Laplace's equation – no chance to trap with static fields

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Paul trap: Use a ponderomotive potential – change potential fast compared to speed of ion

$$\frac{\partial^2 V}{\partial x^2} + \left(\frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}\right) \cos(\Omega t)$$
$$M\frac{d^2 x}{dt^2} = qE\cos\Omega t \qquad \frac{1}{2}M\left(\frac{dx}{dt}\right)^2 = U_{\rm PP} = \frac{q^2 E^2}{2M\Omega^2}\sin^2\Omega t$$

Time average - Effective potential energy which is minimal at minimum E

Penning trap: Add a homogeneous magnetic field – overides the electric repulsion

The "workhorse" linear Paul trap

Trap Frequencies Axial : < 3 MHz

Radial: < 20 MHz Radial Freq **O** I/Mass

Potentials gives almost ideal harmonic behavior in 3D

Internal state electronic qubits

Qubit choices

Calcium optical qubit

Qubit measurement

Single quantum system – many repeats 8,28,10,30,20,45,20 35

Single shot $p_{\rm error} = 2 \times 10^{-4}$

Field-independent "clock" qubits

Identical qubits + Decoherence-Free Subspaces

Rejection of common-mode noise – DFS states for identical qubits

$$|0\rangle + e^{i\omega'(t)t} |1\rangle \qquad \qquad |0\rangle + e^{i\omega(t)t} |1\rangle$$

Now consider entangled state

$$e^{i\omega(t)t} |01\rangle + e^{i\omega'(t)t} |10\rangle = e^{i\omega(t)t} \left(|01\rangle + e^{i(\omega'(t) - \omega(t))t} |10\rangle \right)$$

If noise is common mode, entangled states can have very long coherence times

Haffner et al., Appl. Phys. B 81, 151-153 (2005)

Single qubit gates – microwave or lasers

High fidelity single qubit gates

Highest fidelity operations: 0.999999 (Oxford, microwave drive)

Spin-spin interactions + multi-qubit gates

Realize circuits with *many* qubits

Parametrically coupled spin-oscillator system

Choice of Hamiltonian

Ground state laser cooling

Optical state-dependent force

Equally driven resonant sidebands

$$\hat{H}_I = F_0 \left(\hat{a}^{\dagger} + \hat{a} \right) \sigma_x = F_0 X \sigma_x$$

$$U(t) = e^{-i\frac{F_0t}{\hbar}X\sigma_x} = D(\alpha_X(t)\sigma_x)$$

Before

Cats which are squeezed, dead alive and in purgatory

A quantum error-correction code

The forced harmonic oscillator

State dependence and normal modes

Independent normal mode oscillations - shared motion

Stretch mode

 $|1\rangle|1\rangle$

 $|1\rangle|0\rangle$

 $|0\rangle|1\rangle$

 $|0\rangle|0\rangle$

Oscillating force close to resonance with Stretch mode of motion

- No Motion = no phase Motion = phase Motion = phase
- No Motion = no phase

Gate time dynamics – 2 and 3 ions

Gate fidelities ~99 % (Be or Ca or both)

GHZ fidelity > 90% (technical errors dominate)

Entangled state diagnosis

Entangled ions interference experiment

One ion interference experiment

Best results worldwide: Bell state F = 99.9% (Oxford, NIST, hyperfine) Bell state F = 99.8% (Innsbruck, optical)

"Linear chain" Trapped-Ion Quantum Computing

Arbitrary single qubit gates

$$U(\theta) = e^{i\theta\sigma_{\alpha}^{(i)}}$$

$$\sigma_{\alpha}^{(i)} = \sigma_X^{(i)}, \sigma_Y^{(i)}, \sigma_Z^{(i)}$$
Multi-qubit gates

$$U_{MS}(\theta) = e^{i\theta S_X^2}$$

$$S_X = \sum_{i}^{N'} \sigma_X^{(i)}$$

Ion chain is rigid – all ions can be coupled

Most "scalable" approach for near-term NISQ: Monroe + IonQ, Blatt + AQT, etc.

Approaches to scaling

Quantum computers

Quantum error correction

Main observation:errors (physics) are mostly localSolution:1. delocalize information (many qubits required)2. repeatedly check for errors + correct (good operations)

Error check – are these correlated?

Scaling path for ion trap QIP

Optical wiring of the quantum computer

- MIT + Lincoln labs: K. Mehta et al. Nature Nano 11 1066 (2016), Challenge: 33 dB loss from input to ion
- R. J. Niffenegger *et al*, arXiv 2001.05052 (2020): Delivery near UV and visible light to ions

Trap-integrated waveguides

K. Mehta et al. arXiv:2002.03358 (2020)

Diffraction to the ion

Integrated waveguide chips: ETH no. 6

K. Mehta, M. Malinowski, C. Zhang et al. arXiv:2002.03358 (2020)

ETH chip 7: Multi-qubit gates using integrated photonics

K. Mehta, M. Malinowski, C. Zhang et al. arXiv:200203358 (2020) Nature, in press

Trap-integrated waveguides: standing-wave MS gates

K. Mehta et al. SPIE OPTO (2019)

At anti-nodes we have gradients but no field, and vice-versa

Travelling wave "standard" gate

 $E \propto E_0 \sin(kx - \omega t)$

Standing wave – no direct spin drive at node

 $E \propto E_0 \sin(kx) \sin(\omega t)$

Enables MS gate without limitation of off-resonant carrier drive

Trap-integrated waveguides: beyond a single zone

Scaling up – challenges of RF traps

Radio-frequency trap $V_{\text{static}}(\mathbf{r}) + \Phi_{\text{RF}}(\mathbf{r})$

- RF null intrinsically 1-D
- Co-alignment of RF and static potentials
- Heating of ion trap chips

Image: T. Monz, R. Blatt, U. Innsbruck

Junction trap with waveguides (Chi Zhang)

Individual ions in micro-traps

RF traps @ NIST, Freiburg, Sussex

Closely spaced 0-dimensional static + RF potentials

$$\sum_{i} V_i(\mathbf{r}_i) + \sum_{i} \Phi_{\mathrm{RF},i}(\mathbf{r}_i)$$

Normal modes split similar to dipole-dipole coupling

$$\Omega_{\rm ex,z}(1 - 3\cos^2(\phi)) \left(a_i a_j^{\dagger} + a_j a_i^{\dagger}\right)$$
$$\Omega_{\rm ex,z} = \frac{e^2}{4\pi\epsilon_0 M\omega_z d^3} \propto \frac{z_0^2}{d^3} \qquad \text{Zero point motion}$$

- Hard to get small scales anomalous heating limits height
- Limited mode splitting limits spectral isolation for 2-qubit gates

2-qubit gate: Wilson et al. Nature 512, 57–60(2014)

Penning traps

Multi-ion crystals + quantum control: NIST, Imperial, Sydney

 $V(z^2 - (x^2 + y^2)/2) + \{\mathbf{B}\hat{z}\}\$

Single potential well – (rotating) ion crystals of > 100 ions

J. Bollinger et al, NIST

Penning trap arrays

S. Jain, J. Alonso, M. Grau et al. PRX, 10, 3, 031027 (2020)

$$\sum V_i(\mathbf{r}_i) + \Phi_{\mathrm{RF},i}(\mathbf{r}_i) \qquad \sum_i V_i(\mathbf{r}_i) + \{\mathbf{B}\}$$

Static potentials stronger than RF pseudopotentials Lower voltage for same trap spacing

$$|| \Psi_{\rm RF}^{(2)} || = \frac{\sqrt{3}}{8} |q_z| \cdot || \Pi^{(2)} ||$$

P.P. curvature Static curvature $\sim 1/16$

- Traps use only static fields
- Reduced sensitivity to stray fields (B field is homogeneous)
- Power dissipation minimal (during cooling)

Couplings + zero-point motion

Neighboring similar traps: Coulomb couplings (perturbative)

$$(-1)^{\nu}\Omega_{\mathrm{ex},\nu}(1-3\cos^2(\phi_{ij}))\left(a_ia_j^{\dagger}+a_ja_i^{\dagger}\right)$$

 $\mathbf{B} \underbrace{\mathbf{f}}_{i} \phi_{ij} \mathbf{R}_{ij,0} \mathbf{R}_{ij,0}$

Dipoles for all modes act as if they point along the B field

$$\Omega_{\rm ex,z} = \frac{e^2}{4\pi\epsilon_0 M\omega_z d^3} \qquad \qquad \Omega_{\rm ex,\pm} = \frac{e^2}{4\pi\epsilon_0 M(\omega_+ - \omega_-)} d^3$$

Enhanced zero-point motion: consequences

Zero-point motion relates to frequency at which potential energy is modulated

- couplings enhanced

$$\Omega_{
m ex} \propto z_0^2$$

- Laser or B-field motion coupling enhanced
 - Heating "enhanced" $\dot{\overline{n}}_+$ =

$$\dot{\overline{n}}_{+} = \frac{e^{2}}{4m(\omega_{+} - \omega_{-})}S_{E}(\omega_{+})$$
ement

 $\Omega_{\sigma} \propto k z_0 \Omega \text{ or } \Omega \propto z_0 \partial_z B$

Enhancement

Noise sampling frequency

Quantum computation on a fixed lattice

S. Jain, J. Alonso, M. Grau et al. PRX, 10, 3, 031027 (2020)

Selective tuning of ion frequencies to "large" zero-point motion

Well isolated + large zero-point motion: good for 2-qubit gate!

Laser "gate" drive at $\mu \simeq \omega_c/2$ "Theoretical "F > 0.9998 in 16 microseconds, $\Omega_c = 2\pi \times 300 \text{ kHz}, \Delta \phi = \frac{\pi}{40}$

Quantum computation on a movable lattice

Penning: 2-D transport at any position

Homogeneous magnetic field

- 3-dimensional transport accessible
 - stray fields primarily cause frequency shifts
 Previous work: Hellwig et al. NJP 12 065019 (2010)
 Crick et al. RSI 81, 01311 (2010)

Optical connections

Multiple small processors linked by probabilistic entanglement generation and teleportation

Probabilistic remote entanglement generation

- Entangled ions separated by **1m** (Moehring et al. Nature 449, 68 (2008))

- More recent: entanglement rate up to 180 Hz ((2020))

Ultimately requires optical cavities for higher rates.

Efficient single ion – single photon interfaces

Single-atom -> single photon: optical Fabry-Perot cavity Must shield charge of ion from charges on mirror surfaces

Summary of TIQI results

Integrated optics for quantum control

High-fidelity multi-qubit gates

K. Mehta et al. arXiv:200203358 (2020)

Micro-Penning traps for scaling to 2D

- Quantum simulations
- Quantum computation

S. Jain et al. PRX, 10, 3, 031027 (2020) (Multi-ion invariance, theory of normal modes)

Trapped Ion Quantum Information Group ETH Zürich www.tiqi.ethz.ch

Christa Flühmann Dr. Thanh-Long Nguyen Dr. Daniel Kienzler Robin Oswald Roland Matt Chiara Decaroli Simon Ragg Dr. Thomas Lutz Dr. Celeste Carruth

Dr. Vlad Negnevitsky Matteo Marinelli Dr. Karan Mehta Tanja Behrle Francesco Lancelotti Brennan McDonald deNeeve Maciej Malinowski Chi Zhang

Christoph Fischer Oliver Wipfli Dr. Matt Grau Shreyans Jain Nick Schwegler Tobias Saegasser Dr. Chris Axline Martin Stadler

GHZ States of up to 14 ions

Individual rotations on a long ion string

Data: C. Hempel, C. Roos, R. Blatt (Innsbruck)

Global Ramsey, Individually addressed Stark

Engineered spin-spin interactions

Go to limit of large motional detuning (very little entanglement between spin and motion)

 $\Omega \ll \delta$

$$\Phi_{10} = \Phi_{01} \simeq \frac{\Omega^2}{\delta} t$$

Allows creation of many-body Hamiltonians (Friedenauer et al. Nat. Phys 4, 757-761 (2008) Kim et al. Nature 465, 7298 (2010))

Linear chains + multiple oscillator modes

Tuneable range spin-spin interactions

$$H_{\rm SPIN} = \sum_{jj'} J_{jj'}(t) \sigma_j^z \sigma_{j'}^z$$

$$J_{jj'}^{0} = \frac{E_O^2}{2\hbar} \sum_{\lambda} \frac{\omega_{\lambda}}{\mu_R^2 - \omega_{\lambda}^2} \operatorname{Re}\left(\eta_{\lambda j}^* \eta_{\lambda j'}\right)$$

	$\frac{\mu_R - \omega_+}{2\pi}$ / kHz
•	-0.1
•	-1
•	-10
•	-50
•	-100
•	-500

Quantum simulations in long ion strings

(up to 53 ions Zhang et al. Nature 2017)

Tuneable range of interactions

Jurevic et al. Nature 511, 202 (2014)

2D ion crystals in macroscopic Penning traps

 $V_{\text{static}}(\mathbf{r}) + \{\mathbf{B}\}$

Homogeneous magnetic field

REPORT

Quantum spin dynamics and entanglement generation with hundreds of trapped ions

Science 352, 6291 (2016)

The "Quantum CCD" architecture

ETH zürich

On chip modulators Input-output arrays Plug and play fibre systems Free-space bulky modulators (exceptions) Self-developed UV fibres Connectors home built

