Quantum computing with trapped ions

Jonathan Home
Institute for Quantum Electronics, ETH Zürich

European Research Council
Established by the European Commission

Swiss National Science Foundation
EHIzürich

Trapped ions

$$
V_{\text {static }}(\mathbf{r})+\Phi_{\mathrm{RF}}(\mathbf{r})
$$

Ponderomotive potential (change of rapid kinetic motion with position)

Room temperature

4 Kelvin

Radio-frequency ion traps

Laplace's equation

- no chance to trap with static fields

$$
\begin{aligned}
& \frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \\
&
\end{aligned}
$$

Paul trap: Use a ponderomotive potential - change potential fast compared to speed of ion

$$
\begin{gathered}
\frac{\partial^{2} V}{\partial x^{2}}+\left(\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}\right) \cos (\Omega t) \\
M \frac{d^{2} x}{d t^{2}}=q E \cos \Omega t \quad \frac{1}{2} M\left(\frac{d x}{d t}\right)^{2}=U_{\mathrm{PP}}=\frac{q^{2} E^{2}}{2 M \Omega^{2}} \sin ^{2} \Omega t
\end{gathered}
$$

Time average - Effective potential energy which is minimal at minimum E

Penning trap: Add a homogeneous magnetic field - overides the electric repulsion

The "workhorse" linear Paul trap

Trap Frequencies
Axial : $<3 \mathrm{MHz}$
Radial: $<20 \mathrm{MHz}$
Radial Freq $\Theta 1 /$ Mass
Axial : $<3 \mathrm{MHz}$
Radial: $<20 \mathrm{MHz}$
Radial Freq $\Theta 1 /$ Mass
Axial : $<3 \mathrm{MHz}$
Radial: $<20 \mathrm{MHz}$
Radial Freq $\Theta 1 /$ Mass

Potentials gives almost ideal harmonic behavior in 3D

Single ion

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+1 / 2\right)
$$

Internal state electronic qubits

Qubit choices

Calcium optical qubit
Beryllium hyperfine qubit
Lifetime - 1 s

Qubit measurement

Threshold: 5.5 counts

Single quantum system - many repeats 8,28,10,30,20,45,20 35

Single shot $\quad p_{\text {error }}=2 \times 10^{-4}$

Field-independent "clock" qubits

Identical qubits + Decoherence-Free Subspaces

Rejection of common-mode noise - DFS states for identical qubits

$$
|0\rangle+e^{i \omega^{\prime}(t) t}|1\rangle \quad|0\rangle+e^{i \omega(t) t}|1\rangle
$$

Now consider entangled state

$$
e^{i \omega(t) t}|01\rangle+e^{i \omega^{\prime}(t) t}|10\rangle=e^{i \omega(t) t}\left(|01\rangle+e^{i\left(\omega^{\prime}(t)-\omega(t)\right) t}|10\rangle\right)
$$

If noise is common mode, entangled states can have very long coherence times

Single qubit gates - microwave or lasers

$$
I(t)
$$

$$
\begin{aligned}
\hat{H}= & \left(\begin{array}{cc}
0 & \Omega e^{i \phi} \\
\Omega e^{-i \phi} & 0
\end{array}\right) \\
\hat{U}(t) & =\cos (\theta / 2) I+i \sin (\theta / 2) \sigma_{x} \\
\theta & =\Omega t
\end{aligned}
$$

$|\uparrow\rangle \quad$ "Pi" pulse

High fidelity single qubit gates

Method: Randomized benchmarking: long sequences of randomly chosen (known) operations

Computational gate $=\hat{R}_{j}(\pi) \cdot \hat{R}_{i}(\pi / 2) \quad i, j= \pm \hat{X}, \pm \hat{Y}, \pm \hat{Z}, \hat{I}$

Average error > 99.98\% per computational gate

Highest fidelity operations: 0.999999 (Oxford, microwave drive)

Spin-spin interactions + multi-qubit gates

Realize circuits with many qubits

Parametrically coupled spin-oscillator system

Internal states

Ion motion - 3 oscillators per ion

Choice of Hamiltonian

Laser frequency picks out resonant Hamiltonian

Ground state laser cooling

Optical state-dependent force

Equally driven resonant sidebands

$$
\begin{aligned}
\hat{H}_{I} & =F_{0}\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}=F_{0} X \sigma_{x} \\
U(t) & =e^{-i \frac{F_{0} t}{\hbar} X \sigma_{x}}=D\left(\alpha_{X}(t) \sigma_{x}\right)
\end{aligned}
$$

Before

$$
|\uparrow\rangle=\left|\rightarrow_{x}\right\rangle-\left|\leftarrow_{x}\right\rangle
$$

After

$$
\begin{aligned}
& |\rightarrow\rangle\left|-\alpha_{X}\right\rangle+|\leftarrow\rangle\left|+\alpha_{X}\right\rangle
\end{aligned}
$$

Cats which are squeezed, dead alive and in purgatory

C. Flühmann et al. PRL 125, 043602 (2020)

A quantum error-correction code
C. Flühmann et al. Nature 556, 513 (2019)

$$
\begin{array}{llllllll}
W(\beta) & -0.6 & -0.4 & -0.2 & 0 & 0.2 & 0.4 & 0.6
\end{array}
$$

The forced harmonic oscillator

"returns" after

$$
t=\frac{2 \pi}{\delta}
$$

Excitation amount

$$
\propto \frac{F}{\delta}
$$

Evolution $\quad U=\exp \left(\frac{i}{\hbar} \int^{t} H\left(t^{\prime}\right) d t^{\prime}-\frac{1}{2 \hbar^{2}} \int^{t} \int^{t^{\prime}}\left[H\left(t^{\prime}\right), H\left(t^{\prime \prime}\right)\right] d t^{\prime} d t^{\prime \prime}+\ldots\right)$

Transient excitation, phase acquired

State dependence and normal modes

$V=\frac{k}{2} z_{1}^{2}+\frac{k}{2} z_{2}^{2}+\frac{q^{2}}{4 \pi \epsilon_{0}\left|z_{1}-z_{2}\right|}$

Independent normal mode oscillations - shared motion

Stretch mode

Oscillating force close to resonance with Stretch mode of motion

$\begin{array}{ll}|1\rangle|1\rangle & \text { No Motion = no phase } \\ |1\rangle|0\rangle & \text { Motion }=\text { phase } \\ |0\rangle|1\rangle & \text { Motion }=\text { phase } \\ |0\rangle|0\rangle & \text { No Motion = no phase }\end{array}$

Gate time dynamics - 2 and 3 ions

$$
U(t)=D\left(\alpha(t) \hat{S}_{x}\right) e^{i \Phi(t) \hat{S}_{x}^{2}}
$$

2 ions, 1 or 2 species $\quad t=\frac{2 \pi}{\delta_{m}}, \alpha(t)=0$

Gate fidelities ~99 \% (Be or Ca or both)
3 ions, 2 species

GHZ fidelity > 90\%
(technical errors dominate)

Entangled state diagnosis

One ion interference experiment

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(|0\rangle+i e^{i \phi}|1\rangle\right) \\
P\left(+_{\phi_{\pi / 2}}\right)=\left(1+\cos \left(\phi-\phi_{\pi / 2}\right)\right) / 2
\end{gathered}
$$

Entangled ions interference experiment

$$
\begin{gathered}
\left|\psi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+i e^{2 i \phi}|11\rangle\right) \\
P(11)+P(00)=\left(1-\cos \left(2\left(\phi-\phi_{\pi / 2}\right)\right) / 2\right.
\end{gathered}
$$

Best results worldwide:
Bell state $\mathrm{F}=99.9 \%$ (Oxford, NIST, hyperfine)
Bell state F = 99.8\% (Innsbruck, optical)

"Linear chain" Trapped-Ion Quantum Computing

Arbitrary single qubit gates

$$
\begin{aligned}
U(\theta) & =e^{i \theta \sigma_{\alpha}^{(i)}} \\
\sigma_{\alpha}^{(i)} & =\sigma_{X}^{(i)}, \sigma_{Y}^{(i)}, \sigma_{Z}^{(i)}
\end{aligned}
$$

Multi-qubit gates

$$
\begin{aligned}
U_{\mathrm{MS}}(\theta) & =e^{i \theta S_{X}^{2}} \\
S_{X} & =\sum_{i}^{N^{\prime}} \sigma_{X}^{(i)}
\end{aligned}
$$

Ion chain is rigid - all ions can be coupled

Most "scalable" approach for near-term NISQ: Monroe + IonQ, Blatt + AQT, etc.

Approaches to scaling

Quantum computers

Age of the Universe

RUNTIME

1 million qubits 10^{17} gates

Quantum error correction

Main observation: errors (physics) are mostly local
Solution:

1. delocalize information (many qubits required)
2. repeatedly check for errors + correct (good operations)

Error check - are these correlated?

Scaling path for ion trap QIP

Optical wiring of the quantum computer

- MIT + Lincoln labs: K. Mehta et al. Nature Nano 111066 (2016), Challenge: 33 dB loss from input to ion
- R. J. Niffenegger et al, arXiv 2001.05052 (2020): Delivery near UV and visible light to ions

Trap-integrated waveguides

K. Mehta et al. arXiv:2002.03358 (2020)

Commercial foundry

Routing

Fiber matching

Diffraction to the ion

Integrated waveguide chips: ETH no. 6

K. Mehta, M. Malinowski, C. Zhang et al. arXiv:2002.03358 (2020)

Using waveguide-delivered light:

ETH chip 7: Multi-qubit gates using integrated photonics

K. Mehta, M. Malinowski, C. Zhang et al. arXiv:200203358 (2020) Nature, in press
1.5 mW emitted from coupler

Gate time 65 us

Error source	Infidelity $\left(\times 10^{-3}\right)$
Motional mode heating	$2(1)$
Motional frequency drifts	1
Laser frequency noise	1
Two-ion readout error	0.5
Kerr cross-coupling	0.4
Spectator mode occupancies	0.3
Spontaneous emission	0.03
Total	$\sim \mathbf{5} \times \mathbf{1 0}^{\mathbf{- 3}}$

"Raw" fidelity - mitigation techniques known

Trap-integrated waveguides: standing-wave MS gates

At anti-nodes we have gradients but no field, and vice-versa

Travelling wave "standard" gate

$$
E \propto E_{0} \sin (k x-\omega t)
$$

Standing wave - no direct spin drive at node

$$
E \propto E_{0} \sin (k x) \sin (\omega t)
$$

Enables MS gate without limitation of off-resonant carrier drive

Trap-integrated waveguides: beyond a single zone

Scaling up - challenges of RF traps

Radio-frequency trap
 $$
V_{\text {static }}(\mathbf{r})+\Phi_{\mathrm{RF}}(\mathbf{r})
$$

- RF null intrinsically 1-D
- Co-alignment of RF and static potentials

- Heating of ion trap chips

```
i i f tititititititititititutitititutitititutitt t t
```

Junction trap with waveguides (Chi Zhang)

(Out-of-plane direction)

Individual ions in micro-traps

RF traps @ NIST, Freiburg, Sussex

Closely spaced 0-dimensional static + RF potentials

$$
\sum_{i} V_{i}\left(\mathbf{r}_{i}\right)+\sum_{i} \Phi_{\mathrm{RF}, i}\left(\mathbf{r}_{i}\right)
$$

Normal modes split similar to dipole-dipole coupling

$$
\begin{aligned}
& \Omega_{\mathrm{ex}, z}\left(1-3 \cos ^{2}(\phi)\right)\left(a_{i} a_{j}^{\dagger}+a_{j} a_{i}^{\dagger}\right) \\
& \Omega_{\mathrm{ex}, \mathrm{z}}=\frac{e^{2}}{4 \pi \epsilon_{0} M \omega_{z} d^{3}} \propto \frac{z_{0}^{2}}{d^{3}} \quad \text { Zero point motion }
\end{aligned}
$$

- Hard to get small scales - anomalous heating limits height
- Limited mode splitting limits spectral isolation for 2-qubit gates

2-qubit gate: Wilson et al. Nature 512, 57-60(2014)

Penning traps

Multi-ion crystals + quantum control: NIST, Imperial, Sydney

$$
V\left(z^{2}-\left(x^{2}+y^{2}\right) / 2\right)+\{\mathbf{B} \hat{z}\}
$$

Single potential well - (rotating) ion crystals of >100 ions

Penning trap arrays

S. Jain, J. Alonso, M. Grau et al. PRX, 10, 3, 031027 (2020)

$$
\sum V_{i}\left(\mathbf{r}_{i}\right)+\Phi_{\mathrm{RF}, i}\left(\mathbf{r}_{i}\right)
$$

Static potentials stronger than RF pseudopotentials Lower voltage for same trap spacing

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\left\|\Psi_{\mathrm{RF}}^{(2)}\right\|= & \frac{\sqrt{3}}{8}\left|q_{z}\right| \cdot\left\|\Pi^{(2)}\right\| \\
\text { P.P. curvature } & \text { Static curvature } \\
& \sim 1 / 16
\end{array}
\end{aligned}
$$

- Traps use only static fields
- Reduced sensitivity to stray fields (B field is homogeneous)
- Power dissipation minimal (during cooling)

Couplings + zero-point motion

Neighboring similar traps: Coulomb couplings (perturbative)

$$
(-1)^{\nu} \Omega_{\mathrm{ex}, \nu}\left(1-3 \cos ^{2}\left(\phi_{i j}\right)\right)\left(a_{i} a_{j}^{\dagger}+a_{j} a_{i}^{\dagger}\right)
$$

Dipoles for all modes act as if they point along the B field

$$
\Omega_{\mathrm{ex}, \mathrm{z}}=\frac{e^{2}}{4 \pi \epsilon_{0} M \omega_{z} d^{3}} \quad \Omega_{\mathrm{ex}, \pm}=\frac{e^{2}}{4 \pi \epsilon_{0} M\left(\omega_{+}-\omega_{-}\right) d^{3}}
$$

Enhanced zero-point motion: consequences

Zero-point motion relates to frequency at which potential energy is modulated
$\omega_{+} \gg \omega_{-}$
Mod. Cyclotron

$$
z_{0}=\sqrt{\frac{\hbar}{2 m\left(\omega_{+}-\omega_{-}\right)}}
$$

$$
\omega_{+}-\omega_{-} \ll \omega_{ \pm}
$$

- couplings enhanced

$$
\Omega_{\mathrm{ex}} \propto z_{0}^{2}
$$

- Laser or B-field motion coupling enhanced

$$
\Omega_{\mathrm{g}} \propto k z_{0} \Omega \text { or } \Omega \propto z_{0} \partial_{z} B
$$

- Heating "enhanced"

$$
\dot{\bar{n}}_{+}=\frac{e^{2}}{4 m\left(\omega_{+}-\omega_{-}\right)} S_{E}\left(\omega_{+}\right)
$$

Quantum computation on a fixed lattice

S. Jain, J. Alonso, M. Grau et al. PRX, 10, 3, 031027 (2020)

Selective tuning of ion frequencies to "large" zero-point motion
Example: 90 beryllium ions, B -field in-plane,

30 micron ion spacing

Mode spectrum

Well isolated + large zero-point motion: good for 2-qubit gate! Laser "gate" drive at $\mu \simeq \omega_{c} / 2$
"Theoretical" " >0.9998 in 16 microseconds, $\Omega_{c}=2 \pi \times 300 \mathrm{kHz}, \Delta \phi=\frac{\pi}{40}$

Quantum computation on a movable lattice

Kielpinski et al. Nature (2002)

Penning: 2-D transport at any position
Homogeneous magnetic field

- 3-dimensional transport accessible
- stray fields primarily cause frequency shifts

Previous work: Hellwig et al. NJP 12065019 (2010)
Crick et al. RSI 81, 01311 (2010)

Optical connections

Multiple small processors linked by probabilistic entanglement generation and teleportation

(b) Monroe et al. Phys. Rev. A 89022317 (2014)

Probabilistic remote entanglement generation

- Entangled ions separated by 1m (Moehring et al. Nature 449, 68 (2008))
- More recent: entanglement rate up to 180 Hz ((2020))

Ultimately requires optical cavities for higher rates.

Efficient single ion - single photon interfaces

Single-atom -> single photon: optical Fabry-Perot cavity Must shield charge of ion from charges on mirror surfaces

Electrically shielded cavity mirrors

Summary of TIQI results

Integrated optics for quantum control

- High-fidelity multi-qubit gates
K. Mehta et al. arXiv:200203358 (2020)

Micro-Penning traps for scaling to 2D

- Quantum simulations
- Quantum computation
S. Jain et al. PRX, 10, 3, 031027 (2020)
(Multi-ion invariance, theory of normal modes)

Trapped Ion Quantum Information Group ETH Zürich
 www.tiqi.ethz.ch

Christa Flühmann
Dr. Thanh-Long Nguyen Dr. Daniel Kienzler Robin Oswald Roland Matt Chiara Decaroli Simon Ragg
Dr. Thomas Lutz Dr. Celeste Carruth

Dr. Vlad Negnevitsky
Matteo Marinelli
Dr. Karan Mehta
Tanja Behrle
Francesco Lancelotti
Brennan McDonald deNeeve
Maciej Malinowski
Chi Zhang

Christoph Fischer Oliver Wipfli Dr. Matt Grau Shreyans Jain Nick Schwegler Tobias Saegasser Dr. Chris Axline Martin Stadler

GHZ States of up to 14 ions

Monz et al., PRL 106, 130506 (2011), Innsbruck - Blatt group

3 High contrast - 3 ions
$(|11 \ldots 1\rangle+|00 \ldots 0\rangle) / \sqrt{2}$ 苇

6

8

10

12
4

5

Reduced contrast - 14 ions

Individual rotations on a long ion string

Data: C. Hempel, C. Roos, R. Blatt (Innsbruck)

Global Ramsey, Individually addressed Stark
b)

Engineered spin-spin interactions

Go to limit of large motional detuning (very little entanglement between spin and motion)

$$
\Omega \ll \delta
$$

000000000000000000000000000000

$$
\Phi_{10}=\Phi_{01} \simeq \frac{\Omega^{2}}{\delta} t
$$

$$
\begin{aligned}
& \frac{1}{2}(|00\rangle+|10\rangle+|01\rangle+|11\rangle) \\
& \frac{1}{2}(|00\rangle+i|10\rangle+i|01\rangle+|11\rangle)
\end{aligned}
$$

Allows creation of many-body Hamiltonians
(Friedenauer et al. Nat. Phys 4, 757-761 (2008)
Kim et al. Nature 465, 7298 (2010))

Linear chains + multiple oscillator modes

Mode frequencies: Be ions $\quad f_{x}=13.2 \mathrm{MHz}, f_{y}=14.2 \mathrm{MHz}$

$$
f_{z}=300 \mathrm{kHz}
$$

$\sim f_{\text {exchange }}$
$\sim N_{\text {ions }} f_{z}$

$$
f_{\text {exchange }}=\frac{1}{2 \pi} \frac{e^{2}}{2 \pi \epsilon_{0} \omega_{\alpha} m_{\mathrm{ion}} d^{3}}
$$

$$
f_{z}=1.5 \mathrm{MHz}
$$

$$
\hat{H}_{\mathrm{ex}}=h f_{\text {exchange }}\left(\hat{a}^{\dagger} \hat{b}+\hat{a} \hat{b}^{\dagger}\right)
$$

Tuneable range spin-spin interactions

$$
H_{\mathrm{SPIN}}=\sum_{j j^{\prime}} J_{j j^{\prime}}(t) \sigma_{j}^{z} \sigma_{j^{\prime}}^{z}
$$

$$
J_{j j^{\prime}}^{0}=\frac{E_{O}^{2}}{2 \hbar} \sum_{\lambda} \frac{\omega_{\lambda}}{\mu_{R}^{2}-\omega_{\lambda}^{2}} \operatorname{Re}\left(\eta_{\lambda j}^{*} \eta_{\lambda j^{\prime}}\right)
$$

$$
\frac{\mu_{R}-\omega_{+}}{2 \pi} / \mathrm{kHz}
$$

- -0.1
- -1
- -10
- -50
- -100
- -500

Quantum simulations in long ion strings

(up to 53 ions Zhang et al. Nature 2017)

Tuneable range of interactions

Jurevic et al. Nature 511, 202 (2014)

2D ion crystals in macroscopic Penning traps

$$
V_{\text {static }}(\mathbf{r})+\{\mathbf{B}\}
$$

Homogeneous magnetic field

REPORT

Quantum spin dynamics and entanglement generation with hundreds of trapped ions

Science 352, 6291 (2016)

The "Quantum CCD" architecture

$$
\text { Wineland et al., J. Res. N.I.S.T. (1998), Kielpinski et al. Nature 417, } 709 \text { (2002) }
$$

"Move, separate"

ETHzürich

* * *****

397 nm, 866 nm, 729 nm, 854 nm

On chip modulators
Input-output arrays
Plug and play fibre systems

Free-space bulky modulators (exceptions) Self-developed UV fibres Connectors home built

