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Shared Randomness (SR)

A source of SR is specified by a bipartite probability distribution

P(X ,Y) ≡ {p(x , y) | x ∈ X , y ∈ Y} .

In an operational theory an SR resource between Alice and Bob can be obtained from a
shared bipartite system
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Shared Randomness (SR)

A source of SR is specified by a bipartite probability distribution

P(X ,Y) ≡ {p(x , y) | x ∈ X , y ∈ Y} .

In an operational theory an SR resource between Alice and Bob can be obtained from a
shared bipartite system

by performing local measurement on their respective parts.
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Resource Theory of SR

Free resource

P(X ,Y) = P(X )Q(Y)

Let FSR denotes the set of all free states.

The set FSR is not convex.

Free operations

LA ⊗ LB

For classical systems: tensor product of local stochastic matrices SA ⊗ SB .

In quantum scenario: local unitary operations and/or local measurements generally
described by a positive operator valued measure (POVM).

Resource monotones

I (P(X ,Y)) := H(X ) + H(Y)− H(X ,Y)

I (Q(X ′,Y ′)) ≤ I (P(X ,Y)) necessary for conversion P → Q.

But not sufficient.
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Example: Classical vs Quantum

Classical Two-2-coin

C(2) ≡ (p(hh), p(ht), p(th), p(tt))ᵀ ∈ C(2).

Quantum Two-2-quoin

Q(2), corresponds to the states of a two-qubit quantum system.
The state space Q(2) ≡ D(C2

A ⊗ C2
B)

From the two-2-quoin states Alice and Bob can prepare any states of C(2) by
applying local POVMs on their respective parts of the joint system.

C(2) can always replace Q(2) for generating any binary-outcome distributions.

Quantum advantage??
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Simulating higher outcomes: Towards quantum advantage

Classical coins: C(m) −→ C(n)

SC (m 7→ n) ⊂ C(n) that are freely simulable from C(m).

Quoins: Similarly, SQ(m 7→ n) ⊂ C(n) freely simulable from Q(m).

Our main result: SC (2 7→ d) ⊂ SQ(2 7→ d), for d > 2
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Quantum advantage: Non-monopolizing social subsidy game G(3)

On every working day each of the employees buys beverage from the restaurant
chosen at her/his will.
Each day’s bill is accounted for a long time to calculate the probability P(ff ′) of
Alice visiting f restaurant and Bob f ′ restaurant.
Events (ff ′) where each employee ends up in different restaurants (f 6= f ′) are
considered for reimbursement (payoff). [Different Choice]
The minimum probability of the events where each employee ends up in different
restaurants are eligible for reimbursement (payoff). [No Favorites]
Assuming per day expense 1 unit for each, the payoff is

R(n) = min
f 6=f′

p(ff ′).
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Quantum advantage: Non-monopolizing social subsidy game

Optimal source: ‘anti-correlated’ two-d-coin state

C6=α(d) := (p|p(ff) = 0 & p(ff ′) 6= 0, ∀ f, f ′ ∈ {1, · · · , d}, & f 6= f ′).

The maximum achievable payoff in G(n) is assured if the employees share the particular
‘anti-correlated’ coin state Ceq6=α(n), where
p(ff ′) = 1/n(n − 1), ∀ f, f ′ ∈ {1, · · · , n}, & f 6= f ′.

C(2) −→? Ceq6=α(n)

Q(2) −→? Ceq6=α(n)

Payoff

R(n) = min
f 6=f′

p(ff ′) ≤ 1

n(n − 1)
.
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Classical Strategy

Lemma 2: Sub-optimality of classical resource

Given any coin state from C(2) the payoff R(n) is always suboptimal for n > 2.

α-correlated states

Cα(2) := (α, 0, 0, 1− α)ᵀ ≡ α hh + (1− α)tt; α ∈ [0, 1]

Cα(2) can freely simulate any state in C(2).

Cα(2) can not simulate any C6=α(n), for n > 2.

RC(2)
max (3) = 1/8

and
RC(2)

max (4) = 1/15
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Quantum advantage

Optimality of Quantum resource

The optimum payoff in R(n) can be obtained from a coin state in Q(2), for n = 3, 4.

Optimal Quantum Strategy

Let the two-2-quoin state Qsinglet(2) := |ψ−AB〉 = 1√
2

(|01AB〉 − |10AB〉) is shared
between the employees.

Both of them perform the same three outcome trine-POVM
M≡

{
Πk := 2

3
|ψk〉〈ψk |

}
, where |ψk〉 := cos(k − 1)θ3|0〉+ sin(k − 1)θ3|1〉;

k ∈ {1, 2, 3}, θ3 = 2π/3.

This strategy leads to the coin state Ceq6=α(3) yielding the optimum payoff in G(3).

To obtain the optimum payoff in G(4) consider the qubit SIC-POVM in above
protocol instead of the trine-POVM.
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Quantum advantage

A necessary condition

Non-zero discord is necessary for advantage over classical coins in G(n) game for n = 3, 4.

Measurement statistics for any local POVMs performed on zero discordant states
can be simulated by the local operations on the shared classical 2−coin states.

Non-monopolizing social subsidy game turns out to be operationally useful for
detecting presence of quantum discord.
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Quantum advantage: SR distribution through noisy channels

Instead of having SR resources as assistance let us assume that Alice and Bob share
a communication channel (either classical or quantum) for establishing SR aiming to
achieve better payoff in G(n).

Optimal classical channel: perfect binary classical channel (unit classical capacity)

which gives RC(2)
max (3) = 1/8 and RC(2)

max (4) = 1/15.

Quantum advantage

Noisy quantum channel: qubit de-polarizing channel ΛD
β (ρ) := βρ+ (1− β)I/2.

classical capacity χ(ΛD
β ) = 1− H

(
1+β
2

)
ΛD
β has zero quantum capacity whenever β ≤ 1/3.

Better than classical payoff can be obtained for β > 1/4 in G(3) and β > 1/5 in
G(4), while quantum capacity is zero and classical capacity much less than unity.
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Summary

In this work we establish advantage of quantum sources of shared randomness.

Quantum discord is necessary for such an advantage.

The obtained quantum advantage is operationally perceivable as it is demonstrated
through a game.

We also show precedence of quantum channel over its classical counterpart in
distributing shared randomness between two distant parties.
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Future Directions

The class of monotones, completely characterizing the (im)possibility of conversion
between two shared randomness resources, is still missing.

Further characterization of quantum resources providing advantage in SR processing
and distribution.

Higher dimensional and multipartite scenarios.
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