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FROM GRAVITY TO General relativity is

a deterministic theory with non-fixed causal structure.

QUANTUM INFORMATION Quantum theory is

a probabilistic theory with fixed causal structure.
In this paper we build a framework
for probabilistic theories with non-fixed causal structure.
This combines the radical elements
of general relativity and quantum theory.
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SUPERPOSITION OF CAUSAL STRUCTURES

Beyond Quantum Computers
G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron

The manuscript poses and addresses a new very fundamental issue in Quantum Computer Science, which is going
to have a radical impact on the way we currently conceive quantum computation. We show that there exists a new
«ind of "higher-order” guantum computation, potentially much more powerful than the usual guantum processing,
which is feasible, but cannot be realized by a usual quantum circuit. In order to implement this new kind of
computations one needs to change the rules of guantum circuits, also considering circuits with the geometry of the
connections that can be itself in a quantum superposition. The new kind of computation poses also fundamental
problems for unexplored aspects of guantum mechanics in a non-fixed causal framework, which go far beyond
computer-science problems, and may be of relevance in quantum gravity.

arXiv:0912.0195

Quantum computations without definite causal structure

Giulic Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoit Valiron

Phys. Rev. A 88, 022318 — Published 14 August 2013

We show that quantum theory allows for transformations of black boxes that cannot be
realized by inserting the input black boxes within a circuit in a predefined causal order. The
simplest example of such a transformation is the classical switch of black boxes, where two
input black boxes are arranged in two different orders ccnditiorally on the value of &
classical bit. The quantum version of this transformation—the quantum switch—produces
an output circut where the order of the connections is controlled by a quantum bit, which
becomes entangled with the circult structure. Simulating these transformations In a circulit
with fixed causal structure requires either postselection or an extra query to the input black

Phys. Rev. A 88, 022318 (2013)



THE QUANTUM SWITCH

An hypothetical machine that combines two black boxes
in a coherent superposition of alternative orders.
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FIG. 1: Quantum machine with classical control over movable
wires.
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FIG. 2: Quantum machine with quantum control over movable
wires.



INFORMATION-THEORETIC ADVANTAGES

Open Access | Published: 02 October 2012
Quantum correlations with no causal order
Ognyzn Oreshkov -1, Fabio Costa & Caslav Brukner

Nazlure Communications 3, Article number: 1092 (2012) | Cite this arlicle

Perfect discrimination of no-signalling channels vie guantum
superposition of causal structures

Giulio Chiribella _

Phys. Rev. A 86, 04030%R) — Published 10 October 2012 ERoa Oudunetion
Computational Advantage from Quantum-Controlled Ordering
of Gates

Mateus Aradjo, Feblo Costa, anc Caslav Brukner
Prys. Rev | ett. 113, 250402 - Published 18 December 2014

Enhanced Communication with the Assistance of Indefinite
Causel Order

Daniel Ebler, Sina Salek. and Giulio Chiribella ) )
Phys. Rev. Lett. 120, 120502 — Putlished 22 Merch 2018 Quantum Mctrology with Indefinite Causal Order

Xlaobin Zhao, Yuxlang Yang, and Glullo Chiribella
Phys. Rev. Lett. 124, 190503 - Published 14 May 2020

Quantum Refrigeration with Indefinite Causal Order

David =elce and Viatko Vedral
Phys. Rev. Lett. 125, 070603 — Published 11 August 2020



EXPERIMENTS

Experimental superpositionofordersof  Experimental verification of an indefinite
quantum gates causal order
Lerenzo M. Procepic 4, Amir Moganaki, Mateus Aradjo, Fabic Costa, Irat' Alonso

Calafell, Emma G. Dowd, Deny R. Hame!, Lee A. Rozema, Caslav Brukner & Philip Giulia Rubino’", Lee A. Rozema', @ Adrien Feix'?, Mateus Araujo’?, @ Jonas M. Zeuner’, Lorenzo ...
Walther > + See all authurs and affiliations

Nature Communications 8, Article number: 7913 (2015) | Cite this article f‘?‘f’l"‘?‘ {ddva_nces 24 Mar 2017:
ol. 3, no 3,e€1602589

COI: 10.1126/sciedv.1602589

Indefinite Causal Crder in @ Quantum Switch

K. Goswami, C. Giarmalzi, M. Kewming, F. Cosla, C. Branciard, J. Romero, énd A.G. White
Phys. Rev. Lett. 121, 090503 — Published 31 August 2018

Experimental Quantum Switching for Exponentially Superior
Quantum Communication Complexity

Kejin Wei, Nora T schler, Si-Ran Zhao, Yu-Hua' Ui, Juan Miguel Arrazola, Yeng Liu, Weijun Zhang, Hao Li,
Lixing You, Zhen Wang, Yu-Ao Chen, Barry C. Sanders, Qianyg Zhang, Geoff J. Piyde, Feihu Xu, and Jian-
We' Pan

Frys. Rev et 122, 120504 - Published 28 March 2019

Experimental Transmission of Quantum Information Using a
Superposition of Causal Orders

Yu Guo, Xiac-Min Hu, Zhi-Bo Hou, Huzn Cao, Jin-Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li,
Guang-Can Guo, and Giulio Chiribella
Phys. Rav. Lett. 124, 030502 — Published 24 January 2020



PLAN OF THE LECTURE

e Theoretical framework: quantum supermaps
-quantum causal networks
-definite vs indefinite causal order

-the quantum SWITCH
-general higher-order maps

e Applications of the quantum SWITCH

e Physical realizations



THEORETICAL FRAMEWORK:
QUANTUM SUPERMAPS

To see a World in a Grain of Sand
And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand
And Eternity in an hour.

William Blake, ca. 1803



FORGET EVERYTHING, EXCEPT QUANTUM STATES

Promise: there exist quantum systems.

Quantum system —p Hilbert space # = C¢

Quantum states = density matrices )

pELI), Kylply) >0 Viy)ea,| Trpl =1

p=>0



Question:
What is the most general way
to transform
quantum states into quantum states?



ADMISSIBLE MAPS

Admissible map: must be linear” and send states into states,
even when acting locally on one part of
a composite system

input output
S

system, system output
\ \ state \

input A A’

state \ IO

AI

/

JE— p R

R \
local
transformation

*why linear?
see Chiribella, D’Ariano, and Perinotti, in Chiribella and Spekkens, eds.
arXiv:1506.00398, p. 11



EXAMPLE AND NON-EXAMPLE

e Example: unitary map %(p) := UpU', U'U=UU" =1

e Non-example: transpose map O(p) := p’ Vp

Apply itto| ®*) := Y k) ® |k)//d ,
k

get
O ® TR DNDT|) = ) O k)] |k)I|/d

k.l

= ) |I)(k| ® |k)(I|/d
k,l

= SWAP/d % 0



CHARACTERIZATION OF THE ADMISSIBLE MAPS

Every admissible map has a Kraus representation

completely trace-preserving
positive

Admissible maps = completely positive, trace-preserving maps
=: quantum channels

cf. Heinosaari and Ziman, Cambridge University Press (2011).



Next Level:
What is the most general way
to transform
quantum channels into quantum channels?



SUPERMAPS

Supermaps = transformations of quantum channels

input output
channel channel

\ \
@ @’

\

supermap



ADMISSIBLE SUPERMAPS

Admissible supermap: must be linear”
and send channels into channels,
even when acting locally on one part of
a bipartite channel

%/




EXAMPLES

e Encoding-decoding &'(6) := D€ - &,
with & and 9 fixed quantum channels

¢ = K3 ¢ Lk

e Replacement §'(6) := Tr[€(p)] €,
with p fixed state and &, fixed channel

¢ - @ @D @




CHARACTERIZATION
OF THE ADMISSIBLE SUPERMAPS

Theorem

Every admissible supermap can be realized by a network
of channels with memory:

Chiribella, D’Ariano, and Perinotti, EPL 83, 30004 (2008)




Next Next Level:
What is the most general way
to transtform
admissible supermaps into admissible channels?



HIGHER-ORDER SUPERMAPS

input
supermap

\

output

S channel

\
€

“super-duper map”

Admissible “super-duper map”:
must be linear* and send admissible supermaps into channels,
even when acting locally on one part of a bipartite supermap



ADMISSIBLE N-MAPS

N=1 quantum channel —m—




REALIZATION OF ADMISSIBLE N-MAPS

Theorem
Any admissible N-map can be realized by a sequential network of

quantum channels with memory:

Chiribella, D’Ariano, and Perinotti, Phys. Rev. A 80, 022339 (2009)




Getting to the weird levels:
What is the most general way
to transtform
admissible supermaps into admissible supermaps?



THE EASIEST EXAMPLE

Question: what is the most general way to transform a quantum
channel into a supermap?

% - —>




EQUIVALENT FORMULATION

Transforming a channel into a supermap

€ —

S

is equivalent to
transforming a pair of channels into a channel

G

) - (5®)@



TWO COMPLEMENTARY ORDERS

There are two alternative causal networks.

e First realization: place & before &




MIXTURE V5 SUPERPOSITION
OF CAUSAL STRUCTURES

Two complementary choices of causal networks:

C

&

&3

We could choose randomly between these two supermaps.

But we can also choose coherently,
depending on the state of a control qubit.
This gives us a coherent superposition of causal structures.



THE SIMPLIFIED
QUANTUM
SWITCH



THE SIMPLIFIED QUANTUM SWITCH

The simplified quantum SWITCH is the supermap that

takes as input the two channels —E— and —E—
with equal inputs/outputs

and connects them in a coherent superposition of the
following configurations:

Chiribella, D’Ariano, Perinotti, Valiron, arXiv:0912.0195;
Phys. Rev. A 88, 022318 (2013) [hereafter CDPV 2009/2013]



MATHEMATICAL DEFINITION

e Input channels:

A(p) = ZAZ-IOA;L and L@(p) = Z BJ-IOB;L
i J

* Output of simplified quantum SWITCH:
— T
S(A, B)p) = ), 5;pS]

l,]
S == AB;® |0){0] + BA, ® | 1)(1]

states of the
control qubit



INCOMPATIBILITY
WITH
FIXED CAUSAL ORDER



INCOMPATIBILITY WITH FIXED CAUSAL ORDER

Theorem (CDPV 2009/2013)

It is impossible to find quantum channels &, , &, , and &5
such that

S(A, RB) —

for all unitary —m— and —@—

(same holds with & and & in the opposite order,
and for classical mixtures of the two orders)




QUANTUM SWITCH AND TIME LOOPS

[f a network of channels implements the quantum
SWITCH (in the sense of the previous theorem),
then it must contain a loop.

The converse also holds:

[f we have access to a network with a loop,

then we use it to construct a circuit that implements the
quantum SWITCH deterministically.




REALIZATION OF THE SWITCH IN A CIRCUIT
WITH LOQOP [CDPV 2009/2013]

* True time loop: maybe in exotic quantum gravity scenarios

* Simulated time loop: with conclusive teleportation



THE FULL
QUANTUM
SWITCH



THE FULL QUANTUM SWITCH [CDPV 2009/2013]

The full quantum SWITCH is the supermap that

takes as input the two channels —m— and —@—

and places them in a coherent superposition of the following
configurations:




MATHEMATICAL DEFINITION

e Output channel of simplified quantum SWITCH:

S(el, B)p) = . S;pS]

N
S;i =A,QB®[0)0]|+B QA& |1)(1]
/ \

acting in the acting in the
Ist time slot 2nd time slot



EXAMPLE

e Switching a channel with the identity

S(, I)p) = ), SipS]

L,J
S;:=A QIR |00 +I®A ® | 1)(1]

acting in the

acting in the
2nd time slot

1st time slot

Switch of &f with identity = time-delocalized &



SWITCHING
MORE THAN
TWO CHANNELS



FROM 2 TO N

Fact: every permutation of N objects can be decomposed into
a sequence of transpositions (i.e. “switches” of 2 objects).

Example: cyclic permutation (1,2,3) —» (2,3,1)

HBEH —HEEHE—HHEB
S "

By combining ®(N log N) quantum switches of two-channels,
we can coherently control arbitrary permutations of N channels.

Colnaghi, D’Ariano, Perinotti, and Facchini, Phys. Lett. A 376 (2012).
Facchini and Simon Perdrix, in International Conference on Theory and Applications
of Models of Computation, p. 324, Springer (2015).



QUANTUM SWITCH OF N CHANNELS

S(€1, 65, ..., En)(p) = Z i1inyensiyy P ST

15005 sly
11,1,. .

l,.. .,lN

\ Y Z Cﬂ(l) ® Cﬂ(j) R R Cﬂ(N) R ‘ﬂ><ﬂ‘

(1) ( La(N)
TES V / /
acting in the acting in the acting in the
1st time slot 2nd time slot Nth time slot

{CZ} = Kraus operators of €,



ALL
POSSIBLE
SUPERMAPS



RECURSIVE DEFINITION

Types of maps (GC, slide from Tainan Workshop 2015)

e Maps of type 0 (quantum states)

e If x and y are allowed types, then (x,y) is an allowed type

Admissible (x,y) maps: all linear maps
transtorming maps of type x into maps of typey,
even when acting locally.

Most general processes compatible with quantum mechanics!
Explicitly characterized in:
Bisio and Perinotti, Proceedings of the Royal Society A, 475, 20180706 (2019).



CHOI OPERATOR
REPRESENTATION



CHOI OPERATORS

For a linear map &£ : p = ZL(p)
the Choi operator is

Choi(Z) := ) Z(1i)(j]) ® |i){j]
L)

unnormalized :
Choi operator linear map

\ Bell state \

out \ in_E&lt
Choi(Z) T d Ot

1n 1n

Choi, Lin. Alg. Appl. 10, 285 (1976)



ONE-TO-ONE CORRESPONDENCE

The correspondence £ +— Choi(Z) is one-to-one:

P(p) = Tr, [(Iout ® p7) Choi(ff)]

. d2 out

(I)+

@




CHOI REPRESENTATION OF SUPERMAPS

= —

Tl —

—

Chiribella, D’Ariano, and Perinotti, PRA 80 022339 (2009)



EXAMPLE: QUANTUM COMBS

Quantum causal network = sequence of quantum channels

Quantum comb = Choi operator of the causal network

LW N = O

2N-2

2N-1




THE MATHEMATICAL FORM OF THE CAUSAL
STRUCTURE

Characterization of

(V) > ()

quantum combs:

Tron—1 {C(N)} — Ion_o @ OV

CW) _ quantum comb <

Trg {0(2)} = o ® oW

Tr, [C“)} — I,

Gutoski and Watrous, Proc. STOC (2007)
Chiribella, D’Ariano, and Perinotti, PRL 101, 060401 (2008)




OPTIMIZING QUANTUM NETWORKS

Optimizing over quantum networks is a semidefinite program.

Chiribella, NJP 14 125008 (2012);
Chiribella and Ebler, NJP 18 093053 (2016)

Applications:

juantum metrology /tomography /channel discrimination

juantum cryptography/game theory
juantum interactive proof systems
juantum machine learning




RELATION
WITH
PROCESS MATRICES



PROCESS MATRICES

Oreshkov, Costa, Brukner, Nat. Commun. 3, 1 (2012)
popular framework for studying indefinite causal order

Process matrices = Choi operators of admissible supermaps
from N channels to the trivial channel

(the number 1)

trivial
input channels output

—

A

channel

\

1

admissible supermap



CAUSAL INEQUALITIES

classical

< channel,
px,yla,b)

Causal inequalities = Bell-like inequalities that certify
that & is incompatible with a definite
causal order.

Fact: they are violated by some quantum supermaps,

but not by the quantum SWITCH

Oreshkov, Costa, Brukner, Nat. Commun. 3, 1 (2012)



APPLICATIONS
OF
THE QUANTUM SWITCH



QUERY COMPLEXITY
AND
COMMUNICATION
COMPLEXITY



REDUCING QUERY COMPLEXITY

* Testing properties of processes —m— and —@—

e.g. discover if operators commute or anti-commute
probability of correct answer = 1 with the quantum SWITCH

< 1 for every testing strategy where & and 9 are connected
in a definite order.

Chiribella, PRA 86, 040301(R) (2012)

Extension to N channels:
Araujo, Costa, and Brukner, PRL 113, 250402 (2014)



REDUCING COMMUNICATION COMPLEXITY

A

The ability to distinguish

v
ﬂ " |’;
between commuting and (Ret i) g ﬁ A N
(.

anticommuting channels
1S a primitive

that can be used to /U\
reduce the amount of y

communication needed |
by 3 distant parties to e Causally ordered: O(N) bits
compute a desired * SWITCH: O(log N) bits

function. N = size of the input strings

Guerin, Feix, Araujo, and Brukner, PRL 117, 100502 (2016)



BEATING THE HEISENBERG
LIMIT IN
QUANTUM METROLOGY

Zhao and Chiribella, PRL 124, 190503 (2020)



BACK TO THE HARMONIC O5CILLATOR

Consider harmonic oscillator with position and momentum
operators X and P, respectively, and Hamiltonian

H = (X*+ P%»/2

Canonical commutation relation [ X, P| =11

or equivalently, D D, = ¢"” D D,
with D_ = exp[—ixP] and D, = exp[ipX]

Phase space area: A =xp



MEASURING THE PRODUCT OF TWO AVERAGE
DISPLACEMENTS

Settings: A harmonic oscillator is subject to N displacements,
either of its position or of its momentum

ij=exp[—iij] je{l,...,N}

D, = explip;X] ke {l,...,N}

Task: estimate the product A = X p of the average

1 |
displacements X = — X. and p=—



CAUSALLY ORDERED STRATEGIES (1)

Strategy 1: estimate each displacement independently

For a single displacement z,

the Root Mean Square Error (RMSE) is

1
Az = with

\/ SVE
v = number of repetitions of the experiment

E = (X? + P?)/2 = average energy of the probe

The averages and their product are computed classically.

1
RMSE for the product: AA =0 ( )
vN

(standard quantum limit w.r.t. V)



CAUSALLY ORDERED STRATEGIES (2)

Strategy 2: directly estimate the two average displacements

For an average displacement Z,

the RMSE is A7 =

V SvE N

The product of X and p is computed classically.

1
RMSE for the product: AA =0 ( )
vN

(Heisenberg limit w.r.t. N)



CAUSALLY ORDERED STRATEGIES (3)

Most general causally ordered strategy

\U
i

7 7 7 4/?’/
7,

General bound on RMSE:  AAg, .4 = €2 (

i)

No causally ordered scheme can beat Heisenberg limit w.r.t. N



SWITCH-ENHANCED ESTIMATION

= - W
“Tim o m

l—e ®

Final state of the probe and control qubit:

1
— Dy Dp:lw) ® | 0)

\V2
N2
= Dy, Dyelyy @ 100 +e™ 1)

V2




ADVANTAGE OF THE QUANTUM SWITCH
For small A, the quantum SWITCH yields

AA

switch —

VN2

1
to be contrasted with the bound AA;, ., = Q ( ) for
vN

general strategies with definite causal order.

In general, the quantum SWITCH enables estimation of the phase
|
¢ = Z X;D; mod 2z with error A¢p = ——

i,j \/;

N
whereas causally-ordered strategies have error A¢ = Q2 (—)

N7



TOWARDS IMPLEMENTATIONS

e Applications to tests of canonical commutation relations
and modification thereof.

e Experimental challenge: to implement guantum SWITCH
on a harmonic oscillator.
e.g.
-vibrational modes of molecule, with path as control
-axial modes of ion traps, with spin as control.



QUANTUM SHANNON
THEORY
ON
QUANTUM S5PACETIMES



(CLASSICAL) SHANNON THEORY:

The carriers of information are classical:
classical states, classical channels,
classical spacetime

Claude E. Shannon

Information
Source Transmitter Receiver Destination
— > —
Signal Received
Signal
Message T Message

Image from C E Shannon,

Noise A Mathematical Theory of Communication
Source (1948)




QUANTUM SHANNON THEORY

Allows the state of the information carriers
and the channels be quantum.

Messages can be quantum:
not just strings of bits, like 0010110111,

but also quantum superpositions, like
|0010110111) + |1010100011)

NG

Still, spacetime is classical

and
the configuration of the communication

Channels iS ﬁX@d. Charles Benn“ett Gilles Brassard

|W) =




QUANTUM SHANNON THEORY ASSISTED BY
QUANTUM SPACETIMES

Suppose that Alice and Bob are embedded in a superposition
of spacetimes, so that the communication devices between
them are placed in an indefinite order.

How is the exchange of information affected?



PLACEMENT OF THE CHANNELS

Suppose that the communication between a sender (Alice)
and a receiver (Bob) uses n communication devices,

corresponding to channels €, 6,, ..., G,

The structure of spacetime determines
how the devices are placed between Alice and Bob.

e.g. parallel placement vs sequential placement

[dea: adding superposition of orders to the allowed placements.



SHANNON THEORETIC ADVANTAGES

* Model 1: parallel and sequential placement only
* Model 2: parallel, sequential, and superposition of orders

Model 2 outperforms Model 1 in several situations:

-classical data transmission:

Ebler, Salek, Chiribella, Phys. Rev. Lett. 120, 120502 (2018)
Goswami, Romero, White arXiv:1807.07383.

-quantum data transmission:

Salek, Ebler, Chiribella, arXiv:1809.06655
Chiribella et al, arXiv:1810.10457



CLASSICAL COMMUNICATION WITH
COMPLETELY DEPOLARIZING CHANNELS

Depolarizing channel: Ro/4 (p) = E Vp

e Without superposition of orders, no communication is possible.

e With superposition of orders, classical communication becomes
possible at a rate of 0.0488 bits per channel(s) use.

Non-zero classical capacity eperimentally verified with more than 34.8
standard deviations (see Hefei experiment, later)

D. Ebler, S. Salek, G. Chiribella, Phys. Rev. Lett. 120, 120502 (2018)



PERFECT QUANTUM COMMUNICATION WITH
ENTANGLEMENT-BREAKING CHANNEL

1
XY-channel: o/ (p) = E(XpX + YpY)

e Without superposition of orders, every quantum superposition
is decohered to a classical mixture.
Quantum communication impossible!

e With superposition of orders, the resulting channel is

1 ]
‘g(p)=5p®\+><+\+52p2®\—><—\

Noiseless quantum communication possible!
Experimentally verified with fidelity higher than 98%



HEFEI EXPERIMENT

> O 0

Filter HWP QWP  PBS

Y Guo, X-M Hu, Z-B Hou, H Cao, J-M Cui, B-H Liu, Y-F Huang, C-F Li, G-C Guo,
G Chiribella, Phys. Rev. Lett. 124, 030502 (2020).



RELATED RESEARCH

The extension of quantum Shannon theory with superposition of
orders has revived interest in other forms of superpositions:

-superpositions of communication channels

Gisin, Linden, Massar, Popescu, PRA 72, 012338 (2005).

Abbott, Wechs, Horsman, Mhalla, Branciard, arXiv:1810.09826
Chiribella and Kristjansson, Proc. Royal Soc. A 475, 20180903 (2019)

-superpositions of encoding/decoding operations
Guerin, Rubino, Brukner PRA 99, 062317 (2019)

Much debated question: how much of the advantages of the
quantum SWITCH is specific to the superposition of orders
as opposed to being generic to all kinds of superpositions?

Some answers: Kristjansson et al, New J. Phys. 22 073014 (2020)
Rubino et al, https:/ /arxiv.org/abs/2007.05005



PHYSICAL
REALIZATION /SIMULATION
OF
THE QUANTUM SWITCH



DIFFERENT LEVELS OF REALIZATION /SIMULATION

The quantum SWITCH is an abstract supermap,
defined irrespectively of its physical realization.

Existing ways to “implement it” fall into 3 basic categories:

e implementations with closed time loops (real or simulated)
CDP arXiv:0912.0195 and Phys. Rev. A 88, 022318 (2013),

e gravitational implementations with superpositions of masses
Zych et al, Nat. Comm. 10, 3772 (2019)

e table-top implementations with known physics



REALIZATION OR SIMULATION?

All the 3 types of implementation produce
the same output of the quantum SWITCH.

e.g. they produce the unitary evolution

S(U,V):=UV® |0N0| + VU ® | 1)(1]

However, the physical mechanism that produces S(U, V)
from U and V is radically ditferent.

Much debated question:
which mechanisms count as genuine physical realizations?



CONCLUSIONS



(1) Quantum supermaps: a way to explore extensions of quantum
mechanics.

(2) The quantum SWITCH:
indefinite causal order and relation with time loops

(3) Information-processing advantages:

query complexity, communication complexity,

quantum metrology, quantum Shannon theory,

quantum thermodynamics...

Open problems: proving computational speedups,
getting closer to applications.

(4) Physical Realizations
Open problem: better understanding of realizations,
closer relation with quantum gravity?



