Hybrid classical-quantum linear solver on NISQ machines

Shiue Yuan Shiau

National Center for Theoretical Sciences (NCTS) Hsinchu

August 20, 2020

Noisy intermediate-scale quantum (NISQ) era

- Feynman (1982)
- Fully fault-tolerant quantum computer still a long way to go

HHL linear solver (2009), Grover's search (1995), Shor's factorization (1994)

• NISQ era:

- 1. Intermediate scale: 50 ~ 100 of qubits
- 2. Quantum error correction not available
- 3. Error rate 0.1% per gate → 1000 gates at most
- 4. Task-oriented algorithms

quantum approximate optimization algorithm variational quantum eigensolver quantum auto encoder

John Preskill

Preskill, Q2B conference 2017 Quantum 2, 79 (2018)

Quantum technology and business is booming

Representative list of players. A very active ecosystem!

Currently available quantum computing services

Why quantum computer ?

• Quantum algorithms for classically intractable problems

Classically hard but quantum easy, such as Shor's integer factorization

• Complexity arguments

Quantum entanglement/correlation is hard to obtain by a classical means

• Classical algorithms cannot simulate quantum computer

Quantum computing models

Abstract Model	Theory	Commercial Product/ Experiments
Circuit/Gate-based 0⟩−H 0⟩−H	Deutsch (1985)	IBM Q System One
Quantum annealing/ Adiabatic	Kadowaki & Nishimori (1998) Farhi, Goldstone, Gutmann, & Sipser (2000)	D-Wave 2000 Q
One-way/ Measurement-based	Raussendorf & Briegel (2001)	Commercially N/A. Walther et al. Nature (2005) photon 4 qubits.

- 1. Each model has various physical realizations, superconductor, semiconductor, photon... etc.
- 2. Topological quantum computing is beyond the scope of this talk.

Curtesy CC Chén

Classical vs quantum circuits

	Classical	Quantum
State	n classical bits	n qubits
Data	n Boolean data	$2^{n} \text{ complex numbers} \\ \psi\rangle = \sum_{\sigma_{1},\sigma_{n}=0}^{1} c_{\sigma_{1}\sigma_{n}} \sigma_{1},,\sigma_{n}\rangle$
Readout	Deterministic	Probabilistic
Gate Operation	Boolean function	Unitary transformation

Curtesy CC Chen

Universal circuit construction

Any classical/quantum circuit can be constructed using only a small set of gates.

Circuit	Universal Gates	Graph	Truth Table/Matrix
Classical	Boole/Shannon: {AND,OR,NOT} Sheffer (1913): {NAND}		INPUT OUTPUT A B A NAND B 0 0 1 0 1 1 1 0 1 1 1 0
Quantum	{U ₃ ,CX}	U3:	$U_{3}(\lambda,\phi,\theta) = \begin{pmatrix} \cos(\theta/2) & -e^{i\lambda}\sin(\theta/2) \\ e^{i\phi}\sin(\theta/2) & e^{i(\lambda+\phi)}\cos(\theta/2) \end{pmatrix}$
		CX:	$ ext{CNOT} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}.$

Nielsen and Chuang book

Curtesy CC Chen

Solving systems of linear equations has vast implications

Engineering	Finance	Machine Learning	Science	Supercomputer Benchmark
		x2	a Weak axial current d $t = t_{ins}$ u d $t = t_{sep}$ d d $t = t_{sep}$	TOP 500 The List.

Solving systems of linear equations

Given a A matrix and a b vector, solve x Ax = b

$$\begin{pmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & \ddots & \vdots \\ A_{N1} & \cdots & A_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$$

Classical algorithm runs in polynomial time O(N^d) at best

Can quantum linear solver run faster ?

Harrow-Hassidim-Lloyd algorithm Solve $A|x\rangle = |b\rangle$

- Complexity O(logN) for sparse matrices ٠
- BQP-complete (can solve other problems)
- Input |b> and output |x> are quantum states ٠
- Strong coherence demand

Phase Controlled Inverse phase estimation Post-processing rotation estimation QST on the $U(\pi)$ $U(\pi/3)$ ancilla $|0\rangle$ memory qubit X Expectation values with Η Pauli X, Y, Z

Quantum circuit for solving 2 x 2 matrix arXiv:1804.03719

HHL, Phys. Rev. Lett. **103**, 150502 (2009)

SCIENTIFIC REPORTS

natureresearch

OPEN Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines

Chih-Chieh Chen^{1*}, Shiue-Yuan Shiau², Ming-Feng Wu¹ & Yuh-Renn Wu^{3*}

Ulam-von Neumann algorithm

Monte Carlo linear solver

• Solve Ax = b through

$$x = A^{-1}b = (1 - \gamma P)^{-1}b = \sum_{s=0}^{\infty} \gamma^s P^s b$$

Random walk in finite steps to get approximate solution x

$$x_{i_0} = \sum_{s=0}^{c} \gamma^s \sum_{i_0, i_1, \dots = 0}^{N-1} P_{i_0, i_1} \dots P_{i_{s-1}, i_s} b_{i_s}$$

 Complexity O(N) for N X N stochastic matrix P coded in N bits maybe useful in reinforcement learning

Barto, Duff (1993), Sutton, Barto (1998)

Classical random walk on a N-vertex graph

 $P_{i,j} \ge 0$ transition probability of going from vertex i to vertex j or vice versa $P_{i,j} = P_{j,i}$ symmetric (undirected)

vertices labeled by i= (0,1,2,3)

$$\boldsymbol{P} = \begin{pmatrix} P_{00} & P_{01} & P_{02} & P_{03} \\ P_{10} & P_{11} & P_{12} & P_{13} \\ P_{20} & P_{21} & P_{22} & P_{23} \\ P_{30} & P_{31} & P_{32} & P_{33} \end{pmatrix}$$

Encoding N X N matrix usually takes N bits

but encoding on a Hamming cube requires only log₂N bits

hold true for quantum bits

Constructing 4 X 4 transition probability matrix P

Between 2-bit state $|j_1, j_0>$ and $|j'_1, j'_0>$ the m-th bit flips with probability $\sin^2(\theta_m/2)$ or not with probability $\cos^2(\theta_m/2)$

|11> 00> |01> |10> $\left|\cos^{2}\left(\frac{\theta_{0}}{2}\right)\cos^{2}\left(\frac{\theta_{1}}{2}\right)\right| \sin^{2}\left(\frac{\theta_{0}}{2}\right)\cos^{2}\left(\frac{\theta_{1}}{2}\right) - \cos^{2}\left(\frac{\theta_{0}}{2}\right)\sin^{2}\left(\frac{\theta_{1}}{2}\right) - \sin^{2}\left(\frac{\theta_{0}}{2}\right)\sin^{2}\left(\frac{\theta_{1}}{2}\right) \right| |00\rangle$ $\cos^2\left(\frac{\theta_0}{2}\right)\cos^2\left(\frac{\theta_1}{2}\right) \quad \sin^2\left(\frac{\theta_0}{2}\right)\sin^2\left(\frac{\theta_1}{2}\right) \quad \cos^2\left(\frac{\theta_0}{2}\right)\sin^2\left(\frac{\theta_1}{2}\right) \quad |01>$ $\mathbf{P}^{classical} =$ $\cos^2\left(\frac{\theta_0}{2}\right)\cos^2\left(\frac{\theta_1}{2}\right) \sin^2\left(\frac{\theta_0}{2}\right)\cos^2\left(\frac{\theta_1}{2}\right) | |10>$ $\cos^2\left(\frac{\theta_0}{2}\right)\cos^2\left(\frac{\theta_1}{2}\right)$ |11> $= egin{array}{c} \cos^2\left(rac{ heta_1}{2}
ight) & \sin^2\left(rac{ heta_1}{2}
ight) \ \sin^2\left(rac{ heta_1}{2}
ight) & \cos^2\left(rac{ heta_1}{2}
ight) \ \otimes egin{array}{c} \cos^2\left(rac{ heta_0}{2}
ight) & \sin^2\left(rac{ heta_0}{2}
ight) \ \sin^2\left(rac{ heta_0}{2}
ight) & \cos^2\left(rac{ heta_1}{2}
ight) \ \end{array}
ight
angle,$ factorizable matrix

Classical random walk on N-vertex Hamming cube

• Doing coin-flipping over all bits takes O(log N) time

 Limited to factorizable matrices because classical bits uncorrelated

• N X N matrix P

$$P_{J',J}^{classical} = \prod_{\ell=0}^{n-1} \left| \cos^2 \left(\frac{\theta_{\ell}}{2} \right) \right|^{1-i_{\ell}} \left| \sin^2 \left(\frac{\theta_{\ell}}{2} \right) \right|^{i_{\ell}}$$

$$|I\rangle_{c} = |i_{n-1}, ..., i_{1}, i_{0}\rangle_{c}$$
$$|J'\rangle_{c} = |I\rangle_{c} \oplus |J\rangle_{c}$$
bitwise exclusive
$$j_{0} \neq j'_{0} \longrightarrow i_{0} = 1$$
$$j_{0} = j'_{0} \longrightarrow i_{0} = 0$$

Quantum walk on N-vertex Hamming cube

Quantum walk on N-vertex Hamming cube

Lead to nonfactorizable P matrices

because quantum bits correlated

• N X N matrix **P**

$$P_{J',J}^{quantum} = \prod_{\ell=0}^{n-1} \left| U_{3}(\mathbf{u}_{\ell})_{i_{\ell},i_{\ell-1}} \right|^{2}$$
 neighboring qubits temporally correlated non-Markovian memory effect
$$= \prod_{\ell=0}^{n-1} \left| \cos^{2} \left(\frac{\theta_{\ell}}{2} \right) \right|^{1-(i_{\ell} \oplus i_{\ell-1})} \left(\sin^{2} \left(\frac{\theta_{\ell}}{2} \right) \right)^{i_{\ell} \oplus i_{\ell-1}}$$
 $|J'\rangle_{c} = |I\rangle_{c} \oplus |J\rangle_{c}$

$$|I\rangle_c = |i_{n-1}, \ldots, i_1, i_0\rangle_c$$

Results on N=(256, 1024) graphs

- Works on QASM simulator (Qiskit)
- Error reduction $1/\sqrt{n_s}$ like Monte Carlo solver
- Works on noisy IBM Q machine

bounded by machine error readout error condition number communication overhead

CC Chen, SY Shiau, MF Wu, YR Wu, Sci. Rep. **9**, 16251 (2019)

2 runs of quantum walk

$$P_{J',J}^{quantum} = \sum_{k=0}^{1} \left| \sum_{I} f(I, J' \oplus J \oplus I) \delta_{i_{n-1},k} \right|^2$$

Square of the sum: quantum interference comes into play

$$(\mathcal{U})^{d}$$
Initialization Quantum walks Measurement
$$|j_{0}\rangle \xrightarrow{X} \xrightarrow{U_{3}(\theta_{0})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \xrightarrow{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})}_{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})} \underbrace{U_{3}(\theta_{1})} \underbrace{U_{3}$$

$$f(I, K) = [U_{3}(\mathbf{u}_{n-1})]_{i_{n-1}, i_{n-2}} \cdots [U_{3}(\mathbf{u}_{0})]_{i_{0}, k_{n-1}} \qquad U_{3}(\mathbf{u}) = U_{3}(\theta, \phi, \lambda) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -e^{i\lambda}\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\lambda+\phi)}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}$$

Results on 2 runs of quantum walk

CC Chen, SY Shiau, MF Wu, YR Wu, Sci. Rep. 9, 16251 (2019)

Comparison of various classical/quantum algorithms

Algorithm	Time	Space for A	Input/Output
Classical Direct ^{2,3}	$\mathcal{O}(N^3)$	$\mathcal{O}(N^2)$	efficient for any A , \overrightarrow{x} , \overrightarrow{b}
Classical Iterative ^{2,3}	$\mathcal{O}(N^2)$	$\mathcal{O}(N^2)$	efficient for any A , \overrightarrow{x} , \overrightarrow{b}
Quantum HHL ⁴	$\mathcal{O}(\log(N))$	$\mathcal{O}(\log(N))$ qubits	norm $\ \overrightarrow{x}\ $ not available difficult for A , \overrightarrow{x} , \overrightarrow{b}
Classical MC ^{45,53,55} (for one component x_I)	$\mathcal{O}(N)$	$\mathcal{O}(N)$	efficient for any \overrightarrow{x} , \overrightarrow{b} limited A (stochastic P)
Classical RW on HC (for one component x_I)	$\mathcal{O}(\log(N))$	$\mathcal{O}(\log(N))$	efficient for any \overrightarrow{x} , \overrightarrow{b} limited A (factorisable P)
Hybrid QW on HC (for one component x_I)	$\mathcal{O}(\log(N))$	$\mathcal{O}(\log(N))$ qubits	efficient for any \overrightarrow{x} , \overrightarrow{b} limited A (correlated P)

- Discrete time coined quantum random walk linear solver on NISQ machines
- Complexity O(N) for both classical and quantum algorithms
- Classical algorithm can only deal with uncorrelated matrices
- Level of qubit correlation increases with the depth of quantum circuit difficult to evaluate using classical Monte Carlo sampling
- Likely to serve as quantum subroutine in a classical framework