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Noisy intermediate-scale quantum (NISQ) era

John Preskill

• Feynman (1982)

• Fully fault-tolerant quantum computer 
still a long way to go

HHL linear solver (2009), Grover’s search (1995), Shor’s factorization (1994)

• NISQ era: 
1. Intermediate scale: 50 ~ 100 of qubits

2. Quantum error correction not available
3. Error rate 0.1% per gate                  1000 gates at most
4. Task-oriented algorithms 

quantum approximate optimization algorithm
variational quantum eigensolver
quantum auto encoder Preskill, Q2B conference 2017

Quantum 2, 79 (2018)2



Quantum technology and business is booming
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Currently available quantum computing services

LaRose, Quantum 3, 130 (2019)
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Why quantum computer ?

• Quantum algorithms for classically intractable problems

• Complexity arguments

• Classical algorithms cannot simulate quantum computer

Classically hard but quantum easy, such as Shor’s integer factorization

Quantum entanglement/correlation is hard to obtain by a classical means

Preskill, Quantum 2, 79 (2018)
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Quantum computing models

Curtesy CC Chen



Curtesy CC Chen7

Classical vs quantum circuits



Curtesy CC ChenNielsen and Chuang book 8

Universal circuit construction



Solving systems of linear equations
has vast implications 
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Solving systems of linear equations

Given a A matrix and a b vector, solve x                                             

𝐴11 ⋯ 𝐴1𝑁
⋮ ⋱ ⋮

𝐴𝑁1 ⋯ 𝐴𝑁𝑁

𝑥1
⋮
𝑥𝑁

=
𝑏1
⋮
𝑏𝑁

𝐴𝑥 = 𝑏

Classical algorithm runs in polynomial time O(Nd) at best

Can quantum linear solver run faster ?
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Harrow-Hassidim-Lloyd algorithm
Solve 𝑨| ۧ𝑥 = | ۧ𝑏

Quantum circuit for solving 2 x 2 matrix
arXiv:1804.03719

• Complexity O(logN) for sparse matrices

• BQP-complete (can solve other problems)

• Input |b> and output |x>  are quantum states

• Strong coherence demand

HHL, Phys. Rev. Lett. 103, 150502 (2009) 
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Ulam-von Neumann algorithm 
Monte Carlo linear solver

 Solve                   through𝑨𝑥 = 𝑏

𝑥 = 𝑨−1𝑏 = (1 − 𝛾𝑷)−1b = σ𝑠=0
∞ 𝛾𝑠 𝑷 𝑠b

𝑥𝑖0=σ𝑠=0
𝑐 𝛾𝑠 σ𝑖0,𝑖1,…=0

𝑁−1 𝑃𝑖0,𝑖1 …𝑃𝑖𝑠−1,𝑖𝑠𝑏𝑖𝑠

 Random walk in finite steps to get approximate solution x

 Complexity O(N) for N X N stochastic matrix P coded in N bits
maybe useful in reinforcement learning

13Barto, Duff (1993), Sutton, Barto (1998)



𝑃𝑖,𝑗 ≥ 0

Classical random walk on a N-vertex graph

transition probability of going from vertex i to vertex j or vice versa

vertices labeled by i= (0,1,2,3)

𝑷 =

𝑃00 𝑃01
𝑃10 𝑃11

𝑃02 𝑃03
𝑃12 𝑃13

𝑃20 𝑃21
𝑃30 𝑃31

𝑃22 𝑃23
𝑃32 𝑃33
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symmetric (undirected)𝑃𝑖,𝑗 = 𝑃𝑗,𝑖



4-vertex graph requires 2 bits:
Node 0 represented by 2-bit state |00>
Node 1                                                |01>
Node 2                                                |10>
Node 3                                                |11>

Encoding N X N matrix usually takes N bits

but encoding on a Hamming cube 
requires only log2N bits

hold true for quantum bits
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Hamming cube



Constructing 4 X 4 transition probability matrix P

Between 2-bit state |j1,j0> and |j’1,j’0> 
the m-th bit flips with probability sin2(θm/2)

or not with probability cos2(θm/2)

factorizable matrix
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|00> |01> |10> |11>

|00>

|01>

|10>

|11>



 Doing coin-flipping over all bits takes O(log N) time

 Limited to factorizable matrices
because classical bits uncorrelated

 N X N matrix P

Classical random walk on N-vertex Hamming cube
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𝑗0 ≠ 𝑗′0 𝑖0 = 1

bitwise exclusive

𝑗0 = 𝑗′0 𝑖0 = 0



Quantum walk on N-vertex Hamming cube

 Coin-flipping involves a rotation on the coin state 
and a CNOT gate to flip a qubit

 Doing coin-flipping over all qubits takes O(log N)

U operator
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𝑥𝑖0=σ𝑠=0
𝑐 𝛾𝑠 σ𝑖0,𝑖1,…=0

𝑁−1 𝑃𝑖0,𝑖1 …𝑃𝑖𝑠−1,𝑖𝑠𝑏𝑖𝑠
CNOT gate coin rotation
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Quantum walk on N-vertex Hamming cube

 Lead to nonfactorizable P matrices
because quantum bits correlated

 N X N matrix P

neighboring qubits temporally correlated
non-Markovian memory effect



CC Chen, SY Shiau, MF Wu, YR Wu , Sci. Rep. 9, 16251 (2019)

Results on N=(256, 1024) graphs

 Works on QASM simulator (Qiskit)

 Error reduction 1/ 𝑛𝑠 like Monte Carlo solver

 Works on noisy IBM Q machine
bounded by  machine error

readout error
condition number
communication overhead
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2 runs of quantum walk (U)d 

Square of the sum: 
quantum interference comes into play

4-node graph Non-trivial phase dependence
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Results on 2 runs of quantum walk

CC Chen, SY Shiau, MF Wu, YR Wu , Sci. Rep. 9, 16251 (2019)



Comparison of various classical/quantum algorithms
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Summary

• Discrete time coined quantum random walk linear solver 
on NISQ machines

• Complexity O(N) for both classical and quantum algorithms

• Classical algorithm can only deal with uncorrelated matrices

• Level of qubit correlation increases with the depth of quantum circuit
difficult to evaluate using classical Monte Carlo sampling

• Likely to serve as quantum subroutine in a classical framework
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