Advances in photonic quantum information science

<u>Geoff Pryde</u>

prydelab.net

Centre for Quantum Dynamics

Quantum optics and information laboratory

Pryde Lab

prydelab.net

Quantum optics and information laboratory

PhD positions available – Griffith U., Brisbane, Australia

Quantum optics and information laboratory

CENTRE FOR QUANTUM COMPUTATION & COMMUNICATION TECHNOLOGY

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

Photonic quantum information science

A lecture in two parts:

- 1. Photons, photonic tools, and optical quantum information science
- 2. Quantum steering, demonstrated and studied with photons

prydelab.net

Part 1 outline

- 1. Optics **basics**
- 2. Quantum optical encodings
- 3. Quantum optics **technologies** sources and detectors
- 4. Application: Unconditional **quantum metrology** with photons

Some reading:

Slussarenko and Pryde, "Photonic quantum information processing: a concise review," arXiv:1907.06331

Ralph and Pryde, "Optical quantum computation," *Progress in Optics* **54**, 209 (2009); arXiv:1103.6071

Banaszek et al., "Quantum states made to measure," Nature Photonics 3, 673 (2009); Griffith arXiv:0912.4092

Why photons?

Optics provides low-noise quantum systems

- Encoded information can be robust
 - e.g. polarization is well maintained in vacuum – light from the Crab nebula is still polarized after travelling 6500 light years

 Technical noise is much lower than optical quantum noise

Why photons?

Optical systems are readily manipulated

- Precision control of optical beams, frequencies, polarization, intensity, etc
- Interferometry, imaging...

Why photons?

Light is excellent for transmitting information

- Existing optical communications industry
- Basis of telephony, internet, long-range sensing etc.

Optics basics

- Light is a wave...
- ... or a particle...
- ... or both.

• Need two important concepts:

MODES

and

PHOTONS

Photons

- Want to quantize optical fields
- Add energy in chunks → photons
- Approx. view: wave packets (modes) with quanta of energy

Mode **b**, 1 photon (say)

$$|1
angle=\hat{b}^{\dagger}|0
angle$$

General (pure) state of mode: $|\psi
angle=lpha|0
angle+eta|1
angle+\gamma|2
angle+\delta|3
angle+\dots$

Queensland, Australia

Modes and photons together

- Work in the Heisenberg picture...
 - … how creation operators change as they interact with optical elements
- Transforming photons means manipulating modes

Quantum optical encodings

- The idea of quantum information science and technology is to encode information into quantum states
- We'll mostly be concerned with **qubits**
- Let's mention two encodings (others also possible):
 - Coherent states and continuous variables (not discussed today)
 - Dual rail encoding of photons

Dual rail encoding

• Encode a qubit in one photon across two modes

• Common case: same spatial mode; a = H; b = V

Dual rail encoding

• Encode a qubit in one photon across two modes

• Common case: same spatial mode; a = H; b = V

Rotating and measuring photon polarisation qubits

Hadamard gate $|H\rangle = \frac{\lambda/2}{2} (|H\rangle + |V\rangle)/\sqrt{2}$

Arbitrary rotation gate

A. White

Quantum optics technologies

- How do we work with quantum states of light?
- We need to

MAKE,

MEASURE and

MANIPULATE them.

• Let's take a look at the technologies for each of these, with an emphasis on **photons**.

Cartoon picture of optical quantum information tech.

(not necessarily general or completely accurate, but indicative)

Photon sources

- What's needed?
 - Sources of single photons and/or
 - Sources of entangled photons

Making photons

- Want 1 and only 1 photon in a mode
- Can't just attenuate another quantum state, e.g. coherent state from laser

Making photons

Single emitters

Want:

- Deterministic
- Pure
- Short
- Indistinguishable photons

Spontaneous Parametric Down Conversion (basic)

$$\vec{k}_p = \vec{k}_s + \vec{k}_i \qquad \qquad f_p = f_s + f_i$$

Typical SPDC source

High heralding efficiency source

-43

-29

29

43

Bennink, PRA 81, 053805 (2010)

Entangled source (one design)

Output state = $|HV\rangle - |VH\rangle \equiv |01\rangle - |10\rangle$

Quantum dot sources

Somaschi et al., Nature Photonics 10, 340 (2016)

Sources - important ingredients

- Distinguishability of two photons from the same source (M)
- Distinguishability of two photons from different sources (M)
- Efficiency (B)
 - Generation efficiency, Heralding efficiency, Coupling efficiency
- $g^{(2)}(0)$ correlation function (M)
 - (roughly, what is the probability of getting two photons when one expected)
- Speed/rate
- (B, M: see next slide)

Sources

What is needed is to MUX/DEMUX sources

Somaschi et al., Nat. Phot. 10, 340 (2016)

Lenzini et al., Laser & Photonics Reviews 11, 1600297 (2017)

Sources

What is needed is to MUX/DEMUX sources

Somaschi et al., Nat. Phot. 10, 340 (2016)

Time-multiplexed source

Experimental setup (periodic time-multiplexed HSPS)

Kaneda and Kwiat, arXiv:1803.04803

Heralded *entangled* photons (one way)

Measuring photons

- Need to detect a very small energy: ~ 10⁻¹⁹ J for visible/near IR photons
- Some options:
 - Avalanche photodiodes
 - Superconductors

Photon detection

- Desired photon detector
 - High efficiency
 - Fast
 - Photon number resolving
- Limitations at <u>Telecom</u> (~ 1500 nm)

Detector type	Detection efficiency (%)	Max count rate (CPS)	Timing jitter (ns)	Photon number resolution	System dark count rate (CPS)	Operation temperature (K)
InGaAs APD	10	10 ⁸	0.05	No	10 ⁴	240
W TES	99	< 10 ⁴	100	Full	< 1	0.1
WSi SNSPD	95	$10^7 - 10^8$	0.2	No	< 10	1

Based on Rev. Sci. Instrum. 82, 071101 ('11) with some updates and interpretations*

Queensland, Australia

Summary of quantum photonics overview

- Photons (and other optical quantum states) are robust and mobile
- Need to make, manipulate and measure photons
- Sources and detectors are approaching exceptional performance levels

Application: true quantum advantage in entangled-photon metrology

- Photonic entanglement-enhanced interferometry
- The shot noise limit hasn't been surpassed unconditionally, until now
- We unconditionally surpass the shot noise limit

S. Slussarenko et al., Nature Photonics <u>11</u>, 700 (2017)

Photonic quantum metrology – **interferometry**

 "Photonic" means explicitly using photons, e.g. states of definite photon number and/or the use of photon counting (*not squeezing*)

. . .

- Promise of extracting the maximum phase information per photon
- Promise of extracting the better-than-classical phase information per unit of "destruction"

Wolfgramm et al., Nature Phot. 7, 28 (2013)

Genuine quantum-enhanced performance has been a goal for ~ 30 years

B. Yurke, Phys. Rev. Lett. 56, 1515 (1986)
B. C. Sanders, Phys. Rev. A 40, 2417 (1989)
A. N. Boto *et al.*, Phys. Rev. Lett. 85, 2733 (2000)

Resource (= *N*): Number of photons in the interferometer in a defined mode

NOON states with reduced interference visibility

"Period 1/N" fringes

¹ e.g. McCusker and Kwiat, *PRL* **103**, 163602 (2009)

NOON with low arm efficiency (modes, loss, dets ...)

"Period 1/N" fringes

¹ e.g. McCusker and Kwiat, *PRL* **103**, 163602 (2009)

Phase sensitivity heuristic

 $\Delta \phi = \frac{\Delta A}{\left| d\langle A \rangle / d\phi \right|}$ Phase sensitivity: Fringe pattern: $\frac{1}{2}(1 - V \cos N\phi) \times \eta^N$ Gradient: $d\langle A \rangle / d\phi = \frac{1}{2}NV \sin N\phi \times \eta^N$ Classical (SNL): $\Delta \phi_{\text{classical}} = \frac{1}{\sqrt{N}}$

Quantum enhancement if:

$$\eta^N V^2 N > 1$$

- η Heralding (arm) efficiency
- V Interference visibility
- N Number of photons

Resch et al., PRL **98**, 223601 (2007) Okamoto et al, NJP **10** 073033 (2008)

More rigorous: A. Datta et al., PRA 83, 063836 (2011)

Back-of-the-envelope calculation

$\eta \approx 0.82$ $V \approx 0.99$ N = 2

 $\eta^2 V^2 N \approx 1.32 > 1$

Two experiments

- We characterise the performance with two experiments
- 1. From the fringes, we can determine the Fisher information, and compare it with theory
- 2. We can use multiple, *k*, trials (detections) to infer a phase value at a given phase setting.

We can then use multiple, *s*, such phase samples to determine the uncertainty in the inferred phase.

We use *k* = 10,000 trials and *s* = 14,500 samples.

SNL: $N^{tot} = N \times k \times s \times correction factor = 304,375,500$

(Not in this talk)

Experimental phase estimates

Slussarenko et al., N. Phot. 11, 700 (2017)

... on to part 2 !

Part 2: quantum steering

- **1.** What is quantum steering and how is it different to entanglement and Bell inequality violations?
- 2. Practical advantages of quantum steering
 - Loss tolerance
- 3. The asymmetry of quantum steering
 - The one-way steering effect

Griffith UNIVERSITY Oueensland, Australia

Wiseman, Jones, Doherty *PRL* **98**, 140402 (2007)

Entanglement sharing in a quantum network

- Entanglement is a resource for quantum communications and processing (amongst other things)
- Alice and Bob can communicate securely if they share entanglement
- E.g., if they can violate a loophole-free Bell inequality, they can perform deviceindependent QKD

e.g. Ekert, PRL 67, 661 (1991); Acin et al., PRL 98, 230501 (2007)

Steering quantum information task

For Alice and Bob to demonstrate to Charlie that they can create entanglement between their labs.

a) With no trust, they must demonstrate Bell-nonlocality.b) With a trustworthy Bob, Alice must show EPR-steering.c) With both trusted, all that is needed is non-separability.

Wiseman, Jones, Doherty PRL 98, 140402 (2007)

Three types of inequality

4

Consider two pairs of binary measurements: $A, A', B, B' \in \{-1, 1\}$

These can arise from measuring a Pauli operator (e.g. $\hat{\sigma}_{X}$) on a qubit.

Bell-nonlocality (CHSH, 1969)

$$\left\langle AB\right\rangle + \left\langle A'B\right\rangle + \left\langle AB'\right\rangle - \left\langle A'B'\right\rangle \leq 2$$

EPR-steering (Cavalcanti, Jones, Wiseman, Reid, PRA 2009)

$$\left\langle A\hat{\sigma}_{X}^{B}\right\rangle + \left\langle A'\hat{\sigma}_{Z}^{B}\right\rangle \leq \sqrt{2}$$

Non-separability (entanglement witness, mid-90s)

$$\left\langle \hat{\sigma}_X^A \hat{\sigma}_X^B \right\rangle + \left\langle \hat{\sigma}_Z^A \hat{\sigma}_Z^B \right\rangle \leq 1$$

Steering task – convincing a skeptical Bob

 Bob receives his quantum state, 2. announces his measurement setting, 3. measures and records his result as well as Alice's announced result, 4. calculates the steering parameter

Steering is a superset of Bell inequality violation

(Result # 1)

D. J. Saunders, S. J. Jones, H. M. Wiseman and G. J. Pryde, *Nature Physics* **6**, 845 (2010)

Steering noise tolerance

Werner state

$$W_{\mu} = \mu \left| \Psi^{-} \right\rangle \left\langle \Psi^{-} \right| + (1 - \mu) \mathbf{I}/4 \qquad \mu \in [0, 1]$$

n = # of different measurement settings used by Alice & Bob.

- for n = 2, Bell-nonlocality exists if $\mu > 0.707$ [CHSH'69]
- for n = 465, Bell-nonlocality exists *if* $\mu > 0$. 7056 [Vertesi'08]
- for $n = \infty$, Bell-nonlocality exists *only if* $\mu > 0.6595$ [Acin+'06]

How about for EPR-steering?

Traditionally (i.e. following EPR) one considers only n = 2.

- for n = 2, EPR-steering exists if $\mu > 0.707$ [Cavalcanti+'09]
- for $n = \infty$, EPR-steering exists *if and only if* $\mu > 0.5$ [Wiseman+'07]

Quantum steering of Bell-local states

10

Steering tolerant to loss

(Results # 2 & #3)

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman and G. J. Pryde, *Physical Review X* **2**, 031003 (2012)

M. M. Weston, S. Slussarenko, H. M. Chrzanowski, S. Wollmann, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, G. J. Pryde, *Science Advances* **4**, e1701230 (2018)

Verification of remote shared entanglement

To guarantee security offered by quantum mechanics a verification protocol must be performed loophole-free

a.k.a. fair sampling assumption: detected particles represent a fair sample of the entire ensemble

= Violation of Bell inequality with no loopholes

- 3 main loopholes closed simultaneously [1]:
 - ✓ Locality loophole
 - ✓ Freedom of choice loophole
 - ✓ Detection loophole [2]
- Demonstrated by recent experiments:
 - L. Shalm, et. al., PRL **115**, 250402 (2015)
 - M. Giustina, et. al., PRL **115**, 250401 (2015)
 - B. Hensen, et. al., Nature 526, 682 (2015)

[1] J.A. Larsson, J. Phys. A, 47, 424003 (2014); [2] P. Pearle, Phys. Rev. D, 2, 1418 (1970)

Queensland, Australia

Completely photonic loophole-free Bell tests

A strong loophole-free test of local realism

Lynden K. Shalm,¹ Evan Meyer-Scott,² Bradley G. Christensen,³ Peter Bierhorst,¹ Michael A. Wayne,^{3,4} Martin J. Stevens,¹ Thomas Gerrits,¹ Scott Glancy,¹ Deny R. Hamel,⁵ Michael S. Allman,¹ Kevin J. Coakley,¹ Shellee D. Dyer,¹ Carson Hodge,¹ Adriana E. Lita,¹ Varun B. Verma,¹ Camilla Lambrocco,¹ Edward Tortorici,¹ Alan L. Migdall,^{4,6} Yanbao Zhang,² Daniel R. Kumor,³ William H. Farr,⁷ Francesco Marsili,⁷ Matthew D. Shaw,⁷ Jeffrey A. Stern,⁷ Carlos Abellán,⁸ Waldimar Amaya,⁸ Valerio Pruneri,^{8,9} Thomas Jennewein,^{2,10} Morgan W. Mitchell,^{8,9} Paul G. Kwiat,³ Joshua C. Bienfang,^{4,6} Richard P. Mirin,¹ Emanuel Knill,¹ and Sae Woo Nam¹ Phys. Rev. Lett. 115, 250402 (2015)

A significant-loophole-free test of Bell's theorem with entangled photons

Marissa Giustina,^{1, 2},^{*} Marijn A. M. Versteegh,^{1, 2} Sören Wengerowsky,^{1, 2} Johannes Handsteiner,^{1, 2} Armin Hochrainer,^{1, 2} Kevin Phelan,¹ Fabian Steinlechner,¹ Johannes Kofler,³ Jan-Åke Larsson,⁴ Carlos Abellán,⁵ Waldimar Amaya,⁵ Valerio Pruneri,^{5, 6} Morgan W. Mitchell,^{5, 6} Jörn Beyer,⁷ Thomas Gerrits,⁸ Adriana E. Lita,⁸ Lynden K. Shalm,⁸ Sae Woo Nam,⁸ Thomas Scheidl,^{1, 2} Rupert Ursin,¹ Bernhard Wittmann,^{1, 2} and Anton Zeilinger^{1, 2},[†]

Phys. Rev. Lett. 115, 250401 (2015)

Practical limitations

Closing detection loophole requires channel transmission to be higher than a certain (high) threshold [1]

> Losses through the fiber open up the detection loophole

Want to achieve: Entanglement verification over high-loss channel with detection loophole closed

[1] P. H. Eberhard, Phys. Rev. A, 47, R747 (1993)

Alternative test

Quantum

steering

Untrusted $|\psi\rangle$ $|\psi\rangle$ $|\psi\rangle$ $|\psi\rangle$ Trusted

- Additional assumption required:
 - Bob trusts quantum mechanics to describe his own measurements
- Uses entanglement to steer the state of distant quantum system by local measurements
- More robust to loss

Queensland, Australia

Detection loophole in nonlocality tests?

Detection loophole in nonlocality tests?

[°]Fair sampling cheating strategy

Alice can use the detection loophole to cheat

18

¹⁹ Fair sampling cheating strategy

• Alice can use the detection loophole to cheat

- Her heralding efficiency (fraction of times she announces a result) is only 1/n...
- ... but these announcements lead to steering parameter of S_n = 1, the maximum!

²⁰ Loss-Dependent EPR-Steering Bound

Entangled source (one design)

Output state = $|HV\rangle - |VH\rangle \equiv |01\rangle - |10\rangle$

Measured steering parameters

Related experiments:

Smith *et al.*, Nature Comms 3, 625 (2012) Wittmann *et al.*, New J. Phys 14, 053030 (2012)

22

Loss-tolerant steering bounds

Secure steering with arbitrarily high loss \rightarrow max entangled state ($S_n = 1$) $\rightarrow n = \infty$ Imperfect states & finite n?

Better than Bell test, but still not ready for real life applications

[1] A. Bennet, et.al., PRX 2, 031003 (2012)
The "event-ready" approach

- Record an additional "heralding" signal to indicate successful sharing
- > Failed distribution events are excluded upfront from tests
- Allows Alice to maintain her effective heralding efficiency with loss

Event-ready: M. Zukowski, et. al., PRL 71, 4287 (1993); Entanglement swapping: J. Pan, et.al., PRL 80, 3891 (1998)

Heralded quantum steering

Experimental requirements

High visibility Hong-Ou-Mandel interference
 High entangled state fidelity
 High heralding efficiency (on Alice's side)

Made possible by:

 Group velocity matched source: M. Weston, et. al., Opt. Exp. 24, 10869 (2016)
 Superconducting nanowire photon dets: F. Marsili, et al., Nat. Photonics 7, 210 (2013)

High-efficiency SNSPDs:

Sae Woo Nam

(+ team)

- > Heralding efficiencies up to $(82 \pm 2)\%$
- HOM interference visibilities up to 100%
- > Singlet state fidelities up to $(99.0 \pm 0.2)\%$

Experimental demonstration

-PA BSM **S1** Alice Bob **S**2 PBS **Dual HWP Dichroic Mirror** FPC HWP 50:50 BS Dual PBS Coupler QWP PP-KTP Loss (ND filter) SNSPD GT **BP** filter Mirrors Lens

Channel loss 7.7dB, 11.3dB, 14.8dB

Queensland, Australia

The asymmetry of quantum steering

(Result # 4)

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman and G. J. Pryde, *Physical Review Letters* **116**, 160403 (2016)

³⁰ Steering quantum information task

For Alice and Bob to demonstrate to Charlie that they can create entanglement between their labs.

a) With no trust, they must demonstrate Bell-nonlocality.
b) With a trustworthy Bob, Alice must show EPR-steering. Wiseman, Jones, Doherty PRL 98, 140402 (2007)

Can steering be one-way?

Steering demonstrated

Can steering be one-way?

Requires an asymmetric state

• Easiest way is to add *loss* to one side.

Homodyne detection of Gaussian states

V. Handchen et al., Nat. Photon 6, 598 (2012)

Successful Gaussian one-way steering with two-mode squeezed states

But:

Gaussian measurements are insufficient to capture the full nonlocality of Gaussian states

Explicit examples of one-way steerable Gaussian states which are two-way steerable for appropriate measurements

S. Wollmann et al., Phys. Rev. Lett. 116, 160403 (2016)

Do states exist which are one-way steerable for arbitrary measurements?

Do any genuinely one-way steerable states exist? YES!

PHYSICAL REVIEW A 92, 032107 (2015)

Inequivalence of entanglement, steering, and Bell nonlocality for general measurements

Marco Túlio Quintino,¹ Tamás Vértesi,^{1,2} Daniel Cavalcanti,³ Remigiusz Augusiak,³ Maciej Demianowicz,³ Antonio Acín,^{3,4} and Nicolas Brunner¹ Theoretical proof for infinite-setting POVMs

PHYSICAL REVIEW A 90, 012114 (2014)

Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states

D. A. Evans and H. M. Wiseman

One-way steerable state for projective measurements

J. Bowles et al., Rev. Lett. 112, 200402 (2014), P. Skrzypczyk et al., PRL 112, 180404 (2014), R. F. Werner, PRA 40, 4277 (1989).

What is a genuine one-way steerable state?

Using the theorem of Quintino et al. to extend to arbitrary measurements

$$\rho_{AB} = \left(\frac{1-p}{3}\right)\rho_W + \left(\frac{p+2}{3}\right)\left(\frac{l_A}{2} \otimes |v\rangle_B \langle v|_B\right)$$

$$\rho_W = \mu |\psi_s\rangle \langle \psi_s| + \frac{1-\mu}{4} I_4 \qquad \text{with } \mu = [0,1]$$

What this means: Just add a lot more loss

one-way steerable for arbitrary measurements if

$$p > \frac{2\mu + 1}{3}$$

S. Wollmann et al., Phys. Rev. Lett. 116, 160403 (2016)

Experimental generation of steerable state

A. Fedrizzi et al., Opt. Exp. 15, 15377 (2007)

37

³⁸Two-way steering

For Alice $S_{16} = 0.966 \pm 0.005$ at $\eta_A = (16.98 \pm 0.02)\%$ For Bob $S_{16} = 0.954 \pm 0.005$ at $\eta_B = (16.94 \pm 0.02)\%$

³⁹One way steering

For Alice $S_{16} = 0.960 \pm 0.005$ at $\eta_A = (17.17 \pm 0.04)\%$ For Bob $S_{16} = 0.951 \pm 0.006$ **no violation** for n measurement directions on Bloch sphere, here: n=16

40 One-way steering for arbitrary measurements

for n measurement directions on Bloch sphere, here: n=16

0.20

Wollmann et al., *Physical Review Letters* **116**, 160403 (2016)

Not so fast!

- This result assumes that the state is exactly a Werner state.
- Our Werner state fidelity is 99% 99.5%
- Close enough, right?
- WRONG!

Solution:

- (1) Derive a more general bound; and/or (2) Make a better state
- We did both, then demonstrated conclusive one-way steering

Tischler et al., Phys. Rev. Lett. 121, 100401 (2018)

42 Conclusions

- Quantum steering is an asymmetric form of nonlocality that is different from Bell inequality violations and entanglement witnessing
- It is more robust to noise and loss than Bell inequality violation
- It can be configured into a heralded protocol in order to verify nonlocality over a channel with many dB of loss, with the detection loophole closed
- It is a fundamentally asymmetric protocol, and can be shown to be unidirectional for arbitrary choice of measurements
- Steering requires trust in one party, and in QM. There are a variety of scenarios in which this trust seems to be justified, and so steering may be useful for rigorously verifying entanglement in those cases.

