<ロ> <同> < 目> < 目> < 目> < 目 > のへで 1/34

A brief guide to device-independent quantum information

Yeong-Cherng LIANG

National Cheng Kung University, Taiwan

8th International Workshop on Solid-state Quantum Computing & Mini-School on Quantum Information Science, Taipei, Taiwan, 10-15th December 2016

. . .

Thanks to · · ·

Coworkers

N.Gisin

N.Brunner

S.Pironio

J.-D. Bancal

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Conclusion

Thanks to · · ·

Coworkers and funding agencies

N.Gisin

N.Brunner

S.Pironio

• • •

Ministry of Science and Technology

DI entanglement certification, quantification & beyond

Conclusion

<ロ><回><回><回><目><目><目><目><目><目><10</td>

Setting the scene

DI entanglement certification, quantification & beyond

Conclusion

<ロ><回><回><回><目><目><目><目><目><目><10</td>

Setting the scene

Conclusion

<ロ><回><回><回><目><目><目><目><目><目><10</td>

Setting the scene

Conclusion

<ロ><回><回><回><目><目><目><目><目><目><10</td>

Setting the scene

Conclusion

<ロ><回><回><回><目><目><目><目><目><目><10</td>

Setting the scene

Conclusion

<ロ><回><回><回><回><目><目><目><目><目><目><10<0<3/34

Setting the scene

Conclusion

Setting the scene

Conclusion

Setting the scene

Two extreme levels of trusts in quantum experiments

<ロ><回><回><回><回><目><目><目><目><目><目><10<0<3/34

Conclusion

Setting the scene

Two extreme levels of trusts in quantum experiments

<ロ> < □> < □> < 三> < 三> < 三> 三 のへで 3/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

Bennett-Brassard-Mermin 92 protocol

Alice

Bob

(ロ) (日) (日) (日) (日) (日) (100 - 100 -

DI entanglement certification, quantification & beyond

Conclusion

<ロ> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 < つへで 4/34</p>

Motivation from quantum key distributions

Entanglement based quantum key distributions I

Bennett-Brassard-Mermin 92 protocol

DI entanglement certification, quantification & beyond

Conclusion

<ロ> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 < つへで 4/34</p>

Motivation from quantum key distributions

Entanglement based quantum key distributions I

DI entanglement certification, quantification & beyond

Conclusion

<ロ> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 < つへで 4/34</p>

Motivation from quantum key distributions

Entanglement based quantum key distributions I

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

<ロ> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 < つへで 4/34</p>

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ♀ ○ ♀ (?) 4/34</p>

DI entanglement certification, quantification & beyond

Conclusion

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ♀ ○ ♀ (?) 4/34</p>

Motivation from quantum key distributions

Entanglement based quantum key distributions I

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ♀ ○ ♀ (?) 4/34</p>

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ♀ ○ ♀ (?) 4/34</p>

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions I

Joint probability: $P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (四) (三) (三) (三) (34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

- If local subsystem is 2-dimensional (qubit) $\Rightarrow |\Psi\rangle$ is a Bell state
- The same correlations can be achieved with:

 $\rho = \frac{1}{4} \left(|00\rangle\langle 00|_{\mathbf{x}} + |11\rangle\langle 11|_{\mathbf{x}} \right) \otimes \left(|00\rangle\langle 00|_{\mathbf{z}} + |11\rangle\langle 11|_{\mathbf{z}} \right)$

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (日) (日) (日) (日) (日) (100 - 5/34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

- If local subsystem is 2-dimensional (qubit) $\Rightarrow |\Psi\rangle$ is a Bell state
- The same correlations can be achieved with:

 $\rho = \frac{1}{4} \left(\left| 00 \right\rangle \! \left\langle 00 \right|_{\mathrm{x}} + \left| 11 \right\rangle \! \left\langle 11 \right|_{\mathrm{x}} \right) \otimes \left(\left| 00 \right\rangle \! \left\langle 00 \right|_{\mathrm{z}} + \left| 11 \right\rangle \! \left\langle 11 \right|_{\mathrm{z}} \right)$

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (日) (日) (日) (日) (日) (100 - 5/34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

If local subsystem is 2-dimensional (qubit) ⇒ |Ψ⟩ is a Bell state ^{monogamy} uncorrelated with everything else
The same correlations can be achieved with:

 $\rho = \frac{1}{4} \left(|00\rangle\langle 00|_{\mathrm{x}} + |11\rangle\langle 11|_{\mathrm{x}} \right) \otimes \left(|00\rangle\langle 00|_{\mathrm{z}} + |11\rangle\langle 11|_{\mathrm{z}} \right)$

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (同) (三) (三) (三) (34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Alice	● ^ ~ ~ ♥ ~ ~ ~ ●				Bob
	• · · · · · · · · · · · · · · · · · · ·				
	÷			-	DOD
	•~	···· 🗹		~~•	

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

If local subsystem is 2-dimensional (qubit) ⇒ |Ψ⟩ is a Bell state ^{monogamy} uncorrelated with everything else
The same correlations can be achieved with:

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (同) (三) (三) (三) (34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

If local subsystem is 2-dimensional (qubit) ⇒ |Ψ⟩ is a Bell state ^{monogamy} uncorrelated with everything else
The same correlations can be achieved with:

DI entanglement certification, quantification & beyond

Conclusion

(ロ) (同) (三) (三) (三) (34)

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Alice

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

If local subsystem is 2-dimensional (qubit) ⇒ |Ψ⟩ is a Bell state ^{monogamy} uncorrelated with everything else: ρ = Ψ ⊗ ρ_E
The same correlations can be achieved with:

 $\rho = \frac{1}{4} \left(|00\rangle\!\langle 00|_{\mathrm{x}} + |11\rangle\!\langle 11|_{\mathrm{x}} \right) \otimes \left(|00\rangle\!\langle 00|_{\mathrm{z}} + |11\rangle\!\langle 11|_{\mathrm{z}} \right)$

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

Entanglement based quantum key distributions II

Bennett-Brassard-Mermin 92 protocol

Alice

Joint probability:
$$P(a, b|x, y) = \begin{cases} \frac{1}{2} & \text{if } x = y \text{ and } a = -b \\ \frac{1}{4} & \text{if } x \neq y \end{cases}$$

Correlator: $\langle A_x B_y \rangle = \sum_{a,b} ab P(a,b|x,y) = -\delta_{xy}$

- If local subsystem is 2-dimensional (qubit) $\Rightarrow |\Psi\rangle$ is a Bell state $\stackrel{\text{monogamy}}{\Longrightarrow}$ uncorrelated with everything else: $\rho = \Psi \otimes \rho_E$
- The same correlations can be achieved with:

$$\rho = \frac{1}{4} \left(|00\rangle\!\langle 00|_{\mathrm{x}} + |11\rangle\!\langle 11|_{\mathrm{x}} \right) \otimes \left(|00\rangle\!\langle 00|_{\mathrm{z}} + |11\rangle\!\langle 11|_{\mathrm{z}} \right)$$

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit
- A photon has many other degrees of freedom: e.g. frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit!
- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 ⇒ not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

On the assumption of Hilbert space dimension

● Polarization of a photon ⇒ qubit!

- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 ⇒ not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit!
- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit!
- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit!
- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 ⇒ not a qubit measurement!

Conclusion

Motivation from quantum key distributions

Why we cannot take dimension knowledge for granted?

"In theory, there is no difference between theory and practice. But, in practice, there is." by Jan L. A. van de Snepscheut

- Polarization of a photon ⇒ qubit!
- A photon has many other degrees of freedom: e.g., frequency, spatial mode, time bin.
- Polarization measurement never depends only on polarization, it depends also on other degrees of freedom!
 ⇒ not a qubit measurement!
DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

- Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??
- Security from measurement statistics P(a, b|x, y)?
- Device-independent (DI) way to verify entanglement?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

 Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??

• Security from measurement statistics P(a, b|x, y)?

Device-independent (DI) way to verify entanglement?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

 Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??

• Security from measurement statistics P(a, b|x, y)?

Device-independent (DI) way to verify entanglement?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

 Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??

• Security from measurement statistics P(a, b|x, y)?

Device-independent (DI) way to verify entanglement?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

- Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??
- Security from measurement statistics P(a, b|x, y)?
- Device-independent (DI) way to verify entanglement?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from quantum key distributions

The black box scenario

- Security analysis independent of assumption on dimension of *ρ* and detailed functioning of devices??
- Security from measurement statistics P(a, b|x, y)?
- Device-independent (DI) way to verify entanglement?

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$$P(a,b|x,y) = \sum_{\lambda} p_{\lambda} P(a|x,\lambda) P(b|y,\lambda)$$

• $\vec{P} = \{P(a, b|x, y)\}_{x,y,a,b}$ allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$$P(a,b|x,y) = \sum_{\lambda} p_{\lambda} P(a|x,\lambda) P(b|y,\lambda)$$

P = {*P*(*a*, *b*|*x*, *y*)}_{*x*,*y*,*a*,*b*} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${m P}(a,b|x,y) = \sum_{\lambda} \, {m
ho}_{\lambda} \, {m P}(a|x,\lambda) \, {m P}(b|y,\lambda)$$

P = {P(a, b|x, y)}_{x,y,a,b} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${m P}(a,b|x,y) = \sum_{\lambda} \, {m p}_{\lambda} \, {m P}(a|x,\lambda) \, {m P}(b|y,\lambda)$$

P = {P(a, b|x, y)}_{x,y,a,b} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${m P}(a,b|x,y) = \sum_{\lambda} \, {m
ho}_{\lambda} \, {m P}(a|x,\lambda) \, {m P}(b|y,\lambda)$$

P = {P(a, b|x, y)}_{x,y,a,b} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${m P}(a,b|x,y) = \sum_{\lambda} \, {m
ho}_{\lambda} \, {m P}(a|x,\lambda) \, {m P}(b|y,\lambda)$$

P = {P(a, b|x, y)}_{x,y,a,b} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${m P}(a,b|x,y) = \sum_{\lambda} \, {m p}_{\lambda} \, {m P}(a|x,\lambda) \, {m P}(b|y,\lambda)$$

P = {P(a, b|x, y)}_{x,y,a,b} allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${\sf P}(a,b|x,y) = \sum_{\lambda} \, {\sf p}_{\lambda} \, {\sf P}(a|x,\lambda) \, {\sf P}(b|y,\lambda)$$

• $\vec{P} = \{P(a, b|x, y)\}_{x,y,a,b}$ allowed by LHVM form a convex polytope.

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${\sf P}(a,b|x,y) = \sum_{\lambda} \, {\sf p}_{\lambda} \, {\sf P}(a|x,\lambda) \, {\sf P}(b|y,\lambda)$$

• $\vec{P} = \{P(a, b|x, y)\}_{x,y,a,b}$ allowed by LHVM form a convex polytope.

 Message #1: Quantum correlations [cf. Born's rule] $P(a, b|x, y) = tr(\rho M_{a|x}^A \otimes M_{b|y}^B)$ can violate Bell inequalities. < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 のへで 8/34

Bell inequalities

Bell inequalities — from foundation to application

 Bell inequalities are constraints that have to be satisfied by local-hidden-variable models (LHVM)

$${\sf P}(a,b|x,y) = \sum_{\lambda} \, {\sf p}_{\lambda} \, {\sf P}(a|x,\lambda) \, {\sf P}(b|y,\lambda)$$

• $\vec{P} = \{P(a, b|x, y)\}_{x,y,a,b}$ allowed by LHVM form a convex polytope.

 Message #1: Quantum correlations [cf. Born's rule] $P(a, b|x, y) = tr(\rho M_{a|x}^A \otimes M_{b|y}^B)$ can violate Bell inequalities. < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 のへで 8/34

Conclusion

<ロ> < 回> < 回> < 三> < 三> < 三 > 三 のへで 9/34

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

 $\mathcal{S}_{\text{CHSH}} = E_{11} + E_{12} + E_{21} - E_{22}$

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

(ロ)、(型)、(E)、(E)、(E)、(9/34)

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

(ロ)、(型)、(E)、(E)、(E)、(O)()(9/34)

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

<ロト < 団 > < 臣 > < 臣 > 臣 > ○ Q (?) 9/34

Conclusion

Bell inequalities

Example: The Clauser-Horne-Shimony-Holt-Bell inequality

* Stern Gerlach magnet picture from http://www.upscale.utoronto.ca/PVB/Harrison/SternGerlach/SternGerlach.html

シペペ 9/34

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ � ♡ � (♡ 10/34

Bell inequalities

Bell inequality as a device-independent entanglement witness

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of *ρ* nor any assumption/ knowledge of the device implementing M^A_{alx}, M^B_{bly}!
- Bell inequality is a device-independent entanglement witness (DIEW).

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of *ρ* nor any assumption/ knowledge of the device implementing M^A_{alx}, M^B_{bly}!
- Bell inequality is a device-independent entanglement witness (DIEW).

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of *ρ* nor any assumption/ knowledge of the device implementing M^A_{alx}, M^B_{bly}!
- Bell inequality is a device-independent entanglement witness (DIEW).

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of ρ nor any assumption/ knowledge of the device implementing M^A_{alx}, M^B_{bly}!
- Bell inequality is a device-independent entanglement witness (DIEW).

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of *ρ* nor any assumption/ knowledge of the device implementing M^A_{a|x}, M^B_{b|y}!
- Bell inequality is a device-independent entanglement witness (DIEW).

Bell inequality as a device-independent entanglement witness

- Conclusion drawn directly from measurement statistics, independent of dimension of *ρ* nor any assumption/ knowledge of the device implementing M^A_{a|x}, M^B_{b|v}!
- Bell inequality is a device-independent entanglement witness (DIEW).

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Black-box analysis: why bother?

 Easier for theorists to understand the experimental result without having "experts' knowledge".

1 Rosset, Ferretti-Schöbitz, Bancal, Gisin, YCL, Phyle., Rey. A, 2012 - Ose 11/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Black-box analysis: why bother?

 Easier for theorists to understand the experimental result without having "experts' knowledge".

¹ Rosset, Ferretti-Schöbitz, Bancal, Gisin, YCL, Phys., Rey. A, 2012 - 200 11/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Black-box analysis: why bother?

 Easier for theorists to understand the experimental result without having "experts' knowledge".

¹ Rosset, Ferretti-Schöbitz, Bancal, Gisin, YCL, Phye., Rey., A, 2012 - Oac 11/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Black-box analysis: why bother?

 Easier for theorists to understand the experimental result without having "experts' knowledge".

¹ Rosset, Ferretti-Schöbitz, Bancal, Gisin, YCL, Phyle., Rey. A, 2012 - Ose 11/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Black-box analysis: why bother?

 Easier for theorists to understand the experimental result without having "experts' knowledge".

¹Rosset, Ferretti-Schöbitz, Bancal, Gisin, YCL, Phys. Rev. A, 2012.

Conclusion

Motivation from other considerations

Standard entanglement certification methods

 Quantum state tomography ⇒ density matrix ρ separability criterion ⇒ entangled/ separable
 Entanglement witness W:²

$\operatorname{\mathsf{tr}}\left(ho_{\mathsf{sep}}\mathcal{W} ight)\geq 0,$ tr $\left(ho_{\mathsf{ent}}\mathcal{W} ight)<0,$

for all separable $ho_{
m sep}$ and some entangled $ho_{
m ent}$.
Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ
- Entanglement witness \mathcal{W} :²

$ext{tr}\left(ho_{\mathsf{sep}}\mathcal{W} ight)\geq 0,$ tr $\left(ho_{\mathsf{ent}}\mathcal{W} ight)<0,$

The DI paradigm ○○○○○○○○●○ DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness \mathcal{W} :²

 $\operatorname{\mathsf{tr}}\left(
ho_{\mathsf{sep}}\mathcal{W}
ight)\geq 0,$, $\operatorname{\mathsf{tr}}\left(
ho_{\mathsf{ent}}\mathcal{W}
ight)<0,$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion \implies entangled/ separable
- Entanglement witness W:²

 $\operatorname{tr}(\rho_{\operatorname{sep}}\mathcal{W}) \geq \mathbf{0}, \quad \operatorname{tr}(\rho_{\operatorname{ent}}\mathcal{W}) < 0,$

for all separable ρ_{sep} and some entangled ρ_{ent} .

²Gühne & Toth, Phys. Rep., 2009.

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ⑤ へ ^(*) 12/34

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathsf{0}, \quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathsf{0},$$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathsf{0}, \quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathsf{0},$$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathsf{0}, \quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathsf{0},$$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathsf{0}, \quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathsf{0},$$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathsf{0}, \quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathsf{0},$$

Conclusion

Motivation from other considerations

Standard entanglement certification methods

- Quantum state tomography \Rightarrow density matrix ρ separability criterion entangled/ separable
- Entanglement witness W:²

$$\operatorname{tr}\left(
ho_{\operatorname{sep}}\mathcal{W}
ight)\geq \mathbf{0},\quad \operatorname{tr}\left(
ho_{\operatorname{ent}}\mathcal{W}
ight)<\mathbf{0},$$

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

• Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2}\mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle\langle\Psi^{-}| = \frac{1}{4}\mathbb{1}^{\otimes 2} + \frac{1}{4}\sum_{k=1}^{3}\hat{m}_{k}\cdot\vec{\sigma}\otimes\hat{m}_{k}\cdot\vec{\sigma},$$

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2}\mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle\langle\Psi^{-}| = \frac{1}{4}\mathbb{1}^{\otimes 2} + \frac{1}{4}\sum_{k=1}^{3}\hat{m}_{k}\cdot\vec{\sigma}\otimes\hat{m}_{k}\cdot\vec{\sigma},$$

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

³Gühne & Toth, Phys. Rep., 2009.

<ロ> < @ > < E > < E > E の < C 13/34

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2}\mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle\langle\Psi^{-}| = \frac{1}{4}\mathbb{1}^{\otimes 2} + \frac{1}{4}\sum_{k=1}^{3}\hat{m}_{k}\cdot\vec{\sigma}\otimes\hat{m}_{k}\cdot\vec{\sigma},$$

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2} \mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle \langle \Psi^{-}| = \frac{1}{4} \mathbb{1}^{\otimes 2} + \frac{1}{4} \sum_{k=1}^{3} \hat{m}_{k} \cdot \vec{\sigma} \otimes \hat{m}_{k} \cdot \vec{\sigma},$$

Hilbert space

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2} \mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle \langle \Psi^{-}| = \frac{1}{4} \mathbb{1}^{\otimes 2} + \frac{1}{4} \sum_{k=1}^{3} \hat{m}_{k} \cdot \vec{\sigma} \otimes \hat{m}_{k} \cdot \vec{\sigma},$$

Hilbert space

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2} \mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle \langle \Psi^{-}| = \frac{1}{4} \mathbb{1}^{\otimes 2} + \frac{1}{4} \sum_{k=1}^{3} \hat{m}_{k} \cdot \vec{\sigma} \otimes \hat{m}_{k} \cdot \vec{\sigma},$$

Hilbert space

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

DI entanglement certification, quantification & beyond

Conclusion

Motivation from other considerations

A "loophole" in standard entanglement certification method

Entanglement witness³ for two-qubit Werner state

$$\mathcal{W}_{|\Psi^{-}\rangle} = \frac{1}{2} \mathbb{1}^{\otimes 2} - |\Psi^{-}\rangle \langle \Psi^{-}| = \frac{1}{4} \mathbb{1}^{\otimes 2} + \frac{1}{4} \sum_{k=1}^{3} \hat{m}_{k} \cdot \vec{\sigma} \otimes \hat{m}_{k} \cdot \vec{\sigma},$$

Hilbert space

- A way out: Report also potential systematic uncertainty in experimental data.
- Better: are there witnesses invariant for every ϵ ?

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} \,,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^{\perp}\rangle_{AB} \otimes |0\rangle_{C}$).

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><14/34

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} ,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^-\rangle_{AB} \otimes |0\rangle_C$)

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} ,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^-\rangle_{AB} \otimes |0\rangle_C$)

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} ,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^-\rangle_{AB} \otimes |0\rangle_C$)

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} ,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^-\rangle_{AB} \otimes |0\rangle_C$)

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) I

- In the two-party case, Bell inequalities are the only DIEW.
- To detect full multipartite entanglement, i.e., states that cannot be written in the (biseparable) form

$$\rho_{\rm bs} = \sum_{k_1} q_{k_1}^{AB|C} \rho_{AB}^{k_1} \otimes \rho_C^{k_1} + \sum_{k_2} q_{k_2}^{AC|B} \rho_{AC}^{k_2} \otimes \rho_B^{k_2} + \sum_{k_3} q_{k_3}^{BC|A} \rho_{BC}^{k_3} \otimes \rho_A^{k_3} ,$$

Bell violation is insufficient (cf., $|\Psi\rangle = |\Psi^-\rangle_{AB} \otimes |0\rangle_C$)

• Biseparable states must give biseparable correlations $Q'_{2/1}$:

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) II

• The set of biseparable correlations $Q'_{2/1}$ is convex

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

$$P(a,b,c|x,y,z) = \sum_{\lambda} q_{\lambda} P(a|x,\lambda) P(b|y,\lambda) P(c|z,\lambda)$$

- In general, Q'_{2/1} is a subset of the set of tripartite quantum correlations Q'₃: P(a, b, c|x, y, z) = tr(ρ M^A_{a|x} ⊗ M^B_{b|y} ⊗ M^C_{b|z})
- Identification of P ∈ Q'₃ with P ∉ Q'_{2/1} certifies that ρ must be genuinely tripartite entangled.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) II

• The set of biseparable correlations $Q'_{2/1}$ is convex

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

$$P(a, b, c | x, y, z) = \sum_{\lambda} q_{\lambda} P(a | x, \lambda) P(b | y, \lambda) P(c | z, \lambda)$$

- In general, Q[']_{2/1} is a subset of the set of tripartite quantum correlations Q[']₃: P(a, b, c|x, y, z) = tr(ρ M^A_{a|x} ⊗ M^B_{b|y} ⊗ M^C_{b|z})
- Identification of P ∈ Q'₃ with P ∉ Q'_{2/1} certifies that ρ must be genuinely tripartite entangled.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) II

• The set of biseparable correlations $Q'_{2/1}$ is convex

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

$${\cal P}(a,b,c|x,y,z) = \sum_{\lambda} q_{\lambda} {\cal P}(a|x,\lambda) {\cal P}(b|y,\lambda) {\cal P}(c|z,\lambda)$$

- In general, Q[']_{2/1} is a subset of the set of tripartite quantum correlations Q[']₃: P(a, b, c|x, y, z) = tr(ρ M^A_{a|x} ⊗ M^B_{b|y} ⊗ M^C_{c|z})
- Identification of P ∈ Q'₃ with P ∉ Q'_{2/1} certifies that ρ must be genuinely tripartite entangled.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) II

• The set of biseparable correlations $Q'_{2/1}$ is convex

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

$$\mathcal{P}(a,b,c|x,y,z) = \sum_{\lambda} q_{\lambda} \mathcal{P}(a|x,\lambda) \mathcal{P}(b|y,\lambda) \mathcal{P}(c|z,\lambda)$$

- In general, Q[']_{2/1} is a subset of the set of tripartite quantum correlations Q[']₃: P(a, b, c|x, y, z) = tr(ρ M^A_{a|x} ⊗ M^B_{b|y} ⊗ M^C_{c|z})
- Identification of P ∈ Q'₃ with P ∉ Q'_{2/1} certifies that ρ must be genuinely tripartite entangled.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) II

• The set of biseparable correlations $Q'_{2/1}$ is convex

$$P(a, b, c|x, y, z) \stackrel{\mathcal{Q}_{2/1}'}{=} \sum_{\lambda_3} q_{\lambda_3}^{AB|C} P^{\mathcal{Q}}(a, b|x, y, \lambda_3) P(c|z, \lambda_3) + \sum_{\lambda_2} q_{\lambda_2}^{AC|B} P^{\mathcal{Q}}(a, c|x, z, \lambda_2) P(b|y, \lambda_2) + \sum_{\lambda_1} q_{\lambda_1}^{A|BC} P^{\mathcal{Q}}(b, c|y, z, \lambda_1) P(a|x, \lambda_1)$$

$$\mathcal{P}(a,b,c|x,y,z) = \sum_{\lambda} q_{\lambda} \mathcal{P}(a|x,\lambda) \mathcal{P}(b|y,\lambda) \mathcal{P}(c|z,\lambda)$$

- In general, Q[']_{2/1} is a subset of the set of tripartite quantum correlations Q[']₃: P(a, b, c|x, y, z) = tr(ρ M^A_{a|x} ⊗ M^B_{b|y} ⊗ M^C_{c|z})
- Identification of P ∈ Q'₃ with P ∉ Q'_{2/1} certifies that ρ must be genuinely tripartite entangled.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

 Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

 Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

• Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

 Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

 Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent entanglement witness (DIEW) III

 Message #3: Genuine multipartite entanglement can be certified by the violation of Bell-like inequalities.⁴

Device-independent entanglement certification

Entanglement depth: The extent of many-body entanglement

 Entanglement depth⁵/ non-k-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001. ⁶Gühne, Tóth & Briegel, New J. Phys., 2005.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (20을5).4 로 대해 로 아이어 17/34

Device-independent entanglement certification

Entanglement depth: The extent of many-body entanglement

 Entanglement depth⁵/ non-k-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001. ⁶Gühne, Tóth & Briegel, New J. Phys., 2005.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (20을5).4 로 대해 로 아이어 17/34

Device-independent entanglement certification

Entanglement depth: The extent of many-body entanglement

• Entanglement depth⁵/ non-*k*-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001.

⁶Gühne, Tóth & Briegel, New J. Phys., 2005.
Entanglement depth: The extent of many-body entanglement

• Entanglement depth⁵/ non-*k*-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (2005). (■) (■) (■) (■) (17/34

Entanglement depth: The extent of many-body entanglement

• Entanglement depth⁵/ non-*k*-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (2005). (■) (■) (■) (■) (17/34

Entanglement depth: The extent of many-body entanglement

• Entanglement depth⁵/ non-*k*-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (2005). (■) (■) (■) (■) (17/34

Entanglement depth: The extent of many-body entanglement

• Entanglement depth⁵/ non-*k*-producibility⁶: the extent to which many-body entanglement is needed to prepare a (multi-partite) entangled state.

A pure state |ψ⟩ is *k*-producible if we can write:⁷
 |ψ⟩ = |φ₁⟩ ⊗ |φ₂⟩ ⊗ · · · ⊗ |φ_m⟩ where the |φ_i⟩ are states at most *k*-partite.

⁵Sørensen and Mølmer, Phys. Rev. Lett., 2001.

⁷Gühne, Tóth, and Briegel, New J Phys. **7**, 229 (2005). (■) (■) (■) (■) (17/34

Entanglement depth: The extent of many-body entanglement II

 Message #4: Entanglement depth can be certified via the violation of Bell-like inequalities (device-independent witnesses for entanglement depth, DIWED).⁸

⁸YCL, Rosset, Bancal, Pütz, Barnea, Gisin, Phys. Rev. Lett., 2015; Curchod, YCL, Gisin, Phys. Rev. A, 2015.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth I

• A family of *n*-partite, 2-setting, 2-outcome Bell inequalities:¹⁴

$$\mathcal{I}_n: \mathcal{S}_n = 2^{1-n} \sum_{\vec{x} \in \{0,1\}^n} E_n(\vec{x}) - E_n(\vec{1}_n) \stackrel{\text{LHV}}{\leq} 1$$

• A family of DIWED:

¹⁴YCL, Rosset, Bancal, Pütz, Barnea, Gisin, Phys. Rev. Lett., 2015.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth I

• A family of *n*-partite, 2-setting, 2-outcome Bell inequalities:¹⁴

$$\mathcal{I}_{n}: S_{n} = 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \stackrel{\text{LHV}}{\leq} 1$$

A family of DIWED:

$$\mathcal{I}_{n}^{k}: 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \stackrel{k \text{-producible}}{\leq} \mathcal{S}_{k}^{\mathcal{Q},*}.$$

$$\frac{k}{\mathcal{S}_{k}^{\mathcal{Q},*}} \sqrt{2} \quad \frac{5}{3} \quad 1.8428 \quad 1.9746 \quad 2.0777 \quad 2.1610 \quad 2.2299 \quad 3$$

¹⁴YCL, Rosset, Bancal, Pütz, Barnea, Gisin, Phys. Rev. Lett., 2015. 2015. 19/34

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth I

• A family of *n*-partite, 2-setting, 2-outcome Bell inequalities:¹⁴

$$\mathcal{I}_n: \mathcal{S}_n = 2^{1-n} \sum_{\vec{x} \in \{0,1\}^n} E_n(\vec{x}) - E_n(\vec{1}_n) \stackrel{\text{LHV}}{\leq} 1$$

A family of DIWED:

$$\begin{aligned} \mathcal{I}_{n}^{k}: 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \stackrel{k-\text{producible}}{\leq} \mathcal{S}_{k}^{\mathcal{Q},*}. \\ \frac{k}{\mathcal{S}_{k}^{\mathcal{Q},*}} \frac{2}{\sqrt{2}} \frac{3}{5} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{8}{2.0777} \frac{\infty}{2.1610} \frac{2.2299}{2.2299} \frac{3}{3} \end{aligned}$$

¹⁴ YCL, Rosset, Bancal, Pütz, Barnea, Gisin, Phys. Rev. Lett., 2015.

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth II

• A family of DIWED:

Alice-1

$$\mathcal{I}_{n}^{k}: 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \overset{k \text{-producible}}{\leq} \mathcal{S}_{k}^{\mathcal{Q},*}.$$

$$\frac{k}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{2}{\sqrt{2}} \frac{3}{5} \frac{4}{1.8428} \frac{5}{1.9746} \frac{6}{2.0777} \frac{7}{2.1610} \frac{8}{2.2299} \frac{3}{3}$$

Ð

a2 ...

Alice-2

 x_n

Ð

an

Alice-n

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth II

• A family of DIWED:

$$\mathcal{I}_{n}^{k}: 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \stackrel{k \text{-producible}}{\leq} S_{k}^{\mathcal{Q},*}.$$

$$\frac{k}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{2}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{4}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{5}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{4}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{5}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{4}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{5}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{4}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{1}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{1}{|$$

DI entanglement certification, quantification & beyond

Conclusion

Device-independent entanglement certification

Device-independent witnesses for entanglement depth II

• A family of DIWED:

$$\mathcal{I}_{n}^{k}: 2^{1-n} \sum_{\vec{x} \in \{0,1\}^{n}} E_{n}(\vec{x}) - E_{n}(\vec{1}_{n}) \stackrel{k \text{-producible}}{\leq} \mathcal{S}_{k}^{\mathcal{Q},*}.$$

$$\frac{k}{|\mathcal{S}_{k}^{\mathcal{Q},*}|} \frac{2}{\sqrt{2}} \frac{3}{5} \frac{4}{1.8428} \frac{5}{1.9746} \frac{6}{2.0777} \frac{7}{2.1610} \frac{8}{2.2299} \frac{8}{3}$$

The DI paradigm

Conclusion

Device-independent entanglement certification

- How do we quantify entanglement using entanglement monotones —
- Via semidefinite programming!
- A semidefinite program (SDP) is a convex optimization problem that can be efficiently solved on a computer.

The DI paradigm

Conclusion

Device-independent entanglement certification

- How do we quantify entanglement using entanglement monotones — from Bell inequality violating correlations?
- Via semidefinite programming!
- A semidefinite program (SDP) is a convex optimization problem that can be efficiently solved on a computer.

The DI paradigm

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = の < で 21/34

Device-independent entanglement certification

- How do we quantify entanglement using entanglement monotones — from Bell inequality violating correlations?
- Via semidefinite programming!
- A semidefinite program (SDP) is a convex optimization problem that can be efficiently solved on a computer.

The DI paradigm

Conclusion

Device-independent entanglement certification

- How do we quantify entanglement using entanglement monotones — from Bell inequality violating correlations?
- Via semidefinite programming!
- A semidefinite program (SDP) is a convex optimization problem that can be efficiently solved on a computer.

The DI paradigm

Conclusion

Device-independent entanglement certification

- How do we quantify entanglement using entanglement monotones — from Bell inequality violating correlations?
- Via semidefinite programming!
- A semidefinite program (SDP) is a convex optimization problem that can be efficiently solved on a computer.

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013). 🗐 🔗 🖉 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

P(a, b|x, y)

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013) - 🔊 🤆 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

$$P(a, b|x, y) \longrightarrow$$
 Moment matrix $\chi(\rho)$

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013). → QC 22/3

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013). → < < 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013). → < < 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Rhys. Rev. Lett. (2013). → < C 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013) - 🤊 🤆 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013) - 🤊 🤆 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013). → QC 22/34

Bounding entanglement directly from correlations: key idea

 Message #5: Via SDP, lower bound on (genuine) negativity is possible from Bell-inequality-violating correlations.⁹

⁹Moroder, Bancal, YCL, Hoffmann, Gühne, Phys. Rev. Lett. (2013) - 22/34

Device-independent entanglement quantification

Bounding entanglement directly from correlations: examples I

 Minimal negativity for given quantum violation of CHSH Bell inequality:

$$N[
ho_{AB} | I_{ ext{CHSH}} = v] \geq rac{v-2}{4\sqrt{2}-4}$$

 Minimal genuine negativity for given violation of 3-party, 2-setting, 2-outcome Svetlichny inequality I₃₂ ≤ 4:

$$N_G[\rho_{ABC}|I_{32} = v] \ge rac{v-4}{8(\sqrt{2}-1)}$$

 Nontrivial device-independent lower bound on the linear entropy of entanglement can also be computed directly from the amount of Bell-inequality violation.¹⁰

¹⁰Tóth, Moroder, Gühne, Phys. Rev. Lett. (2015), (2

Device-independent entanglement quantification

Bounding entanglement directly from correlations: examples I

 Minimal negativity for given quantum violation of CHSH Bell inequality:

$$N[
ho_{AB} | I_{ ext{CHSH}} = v] \geq rac{v-2}{4\sqrt{2}-4}$$

 Minimal genuine negativity for given violation of 3-party, 2-setting, 2-outcome Svetlichny inequality I₃₂ ≤ 4:

$$N_G[
ho_{ABC}|I_{32}=v] \geq rac{v-4}{8(\sqrt{2}-1)}$$

 Nontrivial device-independent lower bound on the linear entropy of entanglement can also be computed directly from the amount of Bell-inequality violation.¹⁰

Device-independent entanglement quantification

Bounding entanglement directly from correlations: examples I

 Minimal negativity for given quantum violation of CHSH Bell inequality:

$$N[
ho_{AB} | I_{ ext{CHSH}} = v] \geq rac{v-2}{4\sqrt{2}-4}$$

 Minimal genuine negativity for given violation of 3-party, 2-setting, 2-outcome Svetlichny inequality I₃₂ ≤ 4:

$$N_G[
ho_{ABC}|I_{32}=v] \geq rac{v-4}{8(\sqrt{2}-1)}$$

 Nontrivial device-independent lower bound on the linear entropy of entanglement can also be computed directly from the amount of Bell-inequality violation.¹⁰

¹⁰Tóth, Moroder, Gühne, Phys. Rev. Lett. (2015). (⊕) (≡) (≡) (≡) (=) (23/34

Bounding entanglement directly from correlations: examples II

 Minimal negativity for given quantum violation of i2233¹¹ Bell inequality:

¹¹Collins & Gisin, J Phys A, 2004; Kaszlikowski *et al.*, Phys. Rev. A, 2002; Collins *et al.*, Phys. Rev. Lett., 2002

Dimension witnesses

Device-independent bounds on dimension of state space

 Minimal negativity for given quantum violation of i2233¹¹ Bell inequality:

¹¹Collins & Gisin, J Phys A, 2004; Kaszlikowski *et al.*, Phys. Rev. A, 2002; Collins *et al.*, Phys. Rev. Lett., 2002

Dimension witnesses

Device-independent bounds on dimension of state space

 Minimal negativity for given quantum violation of i2233¹¹ Bell inequality:

¹¹Collins & Gisin, J Phys A, 2004; Kaszlikowski *et al.*, Phys. Rev. A, 2002; Collins *et al.*, Phys. Rev. Lett., 2002

Dimension witnesses

Device-independent bounds on dimension of state space

 Message #6: Strength of Bell-inequality violation may reveal dimension information - dimension witness.¹¹

11 Brunner, Pironio, Acín, Méthot & Scarani, Phys. Rev. Lett., 2008. 🛓 🔊 ۹. 🐑 25/34

Dimension witnesses

Device-independent bounds on dimension of state space II

• Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.

Dimension witnesses

Device-independent bounds on dimension of state space II

• Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.

Dimension witnesses

Device-independent bounds on dimension of state space II

- Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.
- Examples:

• Dimension-dependent bound on Bell-inequality violation can also be computed directly using SDPs.¹²

¹²Navascués, de la Torre, and Vértesi, Phys. Rev. X, 2014; Navascués, Feix, Araujo, and Vértesi, Phys. Rev. A, 2015. < □ > < 团 > < 团 > < 团 > < 团 > < 团 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Conclusion

Dimension witnesses

Device-independent bounds on dimension of state space II

- Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.
- Examples:

 Dimension-dependent bound on Bell-inequality violation can also be computed directly using SDPs.¹²

¹²Navascués, de la Torre, and Vértesi, Phys. Rev. X, 2014; Navascués, Feix, Araujo, and Vértesi, Phys. Rev. A, 2015. < □ > < 团 > < 团 > < 团 > < 团 > < 团 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Dimension witnesses

Device-independent bounds on dimension of state space II

- Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.
- Examples:

 Dimension-dependent bound on Bell-inequality violation can also be computed directly using SDPs.¹²

¹²Navascués, de la Torre, and Vértesi, Phys. Rev. X, 2014; Navascués, Feix, Araujo, and Vértesi, Phys. Rev. A, 2015. < □ > < 团 > < 团 > < 团 > < 团 > < 团 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Dimension witnesses

Device-independent bounds on dimension of state space II

- Dimension bound directly from the strength of a Bell inequality violation is possible via SDP.
- Examples:

 Dimension-dependent bound on Bell-inequality violation can also be computed directly using SDPs.¹²

Conclusion

Steerability & measurement incompatibility

Conclusion

Steerability & measurement incompatibility

Conclusion

Steerability & measurement incompatibility

Steerability & measurement incompatibility

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\} \\ \sigma_x \text{ measurement} \end{cases}$

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

DI entanglement certification, guantification & beyond

Conclusion

Steerability & measurement incompatibility

DI entanglement certification, quantification & beyond

Conclusion

J

Steerability & measurement incompatibility

$$\{M_{a|x}^{A}\} \bigoplus_{a}^{n} \underbrace{\mathsf{Alice}}_{x} \underbrace{\stackrel{\circ \cdots }{\underset{i \in \mathbb{Z}}{\longrightarrow}}}_{a} \underbrace{\mathsf{Alice}}_{x} \underbrace{\stackrel{\circ \cdots }{\underset{i \in \mathbb{Z}}{\longrightarrow}}}_{x} \underbrace{\mathsf{Bob}}_{i \in \mathbb{Z}} \underbrace{\mathsf{Pa}_{|x}}_{a} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

If
$$\rho = |\Psi^-\rangle\langle\Psi^-|$$
, then for $\begin{cases} \sigma_2 \text{ measurement } \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\} \end{cases}$

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

$$\{M_{a|x}^{A}\} \bigoplus_{a} \stackrel{\text{Alice}}{} \underbrace{Alice}_{x} \stackrel{\text{one}}{\underset{B}{}} \stackrel{\text{one}}}{\underset{B}{}} \stackrel{\text{one}}{\underset{B}{}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{B}} \stackrel{\text{one}}}{\underset{$$

If
$$\rho = |\Psi^-\rangle\langle\Psi^-|$$
, then for $\begin{cases} \sigma_z \text{ measurement } \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement } \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\} \end{cases}$

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle 0|, |1\rangle\langle 1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle +|, |-\rangle\langle -|\} \end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\}\end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

$$\{M_{a|x}^{A}\} \bigoplus_{a|x}^{A} \underbrace{Alice}_{x} \bigoplus_{a|x}^{A} \underbrace{Alice}_{x} \bigoplus_{a|x}^{A} \underbrace{Bob}_{a|x} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\}\end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

If $\rho = |\Psi^-\rangle\!\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\!\langle 0|, |1\rangle\!\langle 1|\} \\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\!\langle +|, |-\rangle\!\langle -|\} \end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\}\end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

$$\{M_{a|x}^{A}\} \bigoplus_{a|x}^{n} Alice \xrightarrow{Alice}{x} \lambda \longrightarrow \hat{\sigma}_{\lambda} \xrightarrow{\bullet} Bob \xrightarrow{\bullet} \rho_{a|x} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle 0|, |1\rangle\langle 1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle +|, |-\rangle\langle -|\} \end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

$$\{M_{a|x}^{A}\} \bigoplus_{a|x}^{n} Alice \xrightarrow{Alice}{x} \lambda \longrightarrow \hat{\sigma}_{\lambda} \xrightarrow{\bullet} Bob \xrightarrow{\bullet} \rho_{a|x} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\}\end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

Wiseman, Jones & Doherty (Phys. Rev. Lett., 2007) Local-hidden-state (LHS) model: $\rho_{a|x} = \sum_{\lambda} P_{\lambda} D(a|x, \lambda) \hat{\sigma}_{\lambda} \quad \forall x, a$

 ρ admits a LHS model for all $\{M_{a|x}\}_{x,a}$: non-steerable (from Alice to Bob)

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Einstein-Podolsky-Rosen-Schrödinger-steering

$$\{M_{a|x}^{A}\} \bigoplus_{a|x}^{n} Alice \xrightarrow{X} \lambda \longrightarrow \hat{\sigma}_{\lambda} \xrightarrow{\bullet} Bob \xrightarrow{Pa|x} etr_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

If $\rho = |\Psi^-\rangle\langle\Psi^-|$, then for $\begin{cases} \sigma_z \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|0\rangle\langle0|, |1\rangle\langle1|\}\\ \sigma_x \text{ measurement} \Rightarrow \rho_{a|x} \propto \{|+\rangle\langle+|, |-\rangle\langle-|\}\end{cases}$

Schrödinger: "It is rather discomforting ... system to be steered or (1935) piloted into one or the other type ... in spite of [her] having no access to it."

Wiseman, Jones & Doherty (Phys. Rev. Lett., 2007) Local-hidden-state (LHS) model: $\rho_{a|x} = \sum_{\lambda} P_{\lambda} D(a|x, \lambda) \hat{\sigma}_{\lambda} \quad \forall x, a$

 ρ has no LHS model for some $\{M_{a|x}\}_{x,a}$: steerable (from Alice to Bob) ρ admits a LHS model for all $\{M_{a|x}\}_{x,a}$: non-steerable (from Alice to Bob)

Steerability & measurement incompatibility

Quantum steering and its relevance

• Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.

- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014. ¹⁴Piani & Watrous, Phys. Rev. Lett., 2015. ¹⁵Quintino, Vértesi, Brunner, Phys. Rev. Lett., 2014. ¹⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev.Lett@2015. → E SAC 29/34

Steerability & measurement incompatibility

Quantum steering and its relevance

- Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.
- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014.
¹⁴Piani & Watrous, Phys. Rev. Lett., 2015.
¹⁵Quintino, Vértesi, Brunner, Phys. Rev. Lett., 2014.
¹⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev.Lett. 2015. A ≥ A ≥ D < C 29/34.

Steerability & measurement incompatibility

Quantum steering and its relevance

$$\{M_{a|x}^{A}\} \bigoplus_{a}^{n_{a|x}} Alice \bigoplus_{x} \bigoplus_{e}^{n_{a|x}} \bigoplus_{e}^{n_{a|x}} Bob \bigoplus_{a|x} = tr_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

- Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.
- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014. ¹⁴Piani & Watrous, Phys. Rev. Lett., 2015. ¹⁵Quintino, Vértesi, Brunner, Phys. Rev. Lett., 2014. ¹⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev. Lett.@2015. → E SAC 29/34

Steerability & measurement incompatibility

Quantum steering and its relevance

- Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.
- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014.
¹⁴Piani & Watrous, Phys. Rev. Lett., 2015.
¹⁵Ovinting Victorial Development Lett., 2014.

¹⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev. Lett., 2014.

Steerability & measurement incompatibility

Quantum steering and its relevance

- Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.
- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014.
¹⁴Piani & Watrous, Phys. Rev. Lett., 2015.

¹⁵Quintino, Vértesi, Brunner, Phys. Rev. Lett., 2014.

1⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev_Lett@2015. 🗤 🗉 🖉 👁 😪 29/34

Steerability & measurement incompatibility

Quantum steering and its relevance

$$\{M_{a|x}^{A}\} \bigoplus_{a}^{n_{a|x}} Alice \bigoplus_{x} \bigoplus_{e}^{n_{a|x}} \bigoplus_{e}^{n_{a|x}} Bob \bigoplus_{a|x} = tr_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

- Bell-inequality-violating \Rightarrow Steerable \Rightarrow Entangled.
- Steerability can be quantified: steerable weight¹³ and steering robustness (SR).¹⁴
- SR ⇔ probability of success in certain quantum information processing tasks.³
- Steerable $\{\rho_{a|x}\}_{a,x} \Leftrightarrow \{M_{a|x}\}_{x,a}$ not jointly measurable.^{15,16}

¹³Skrzypczyk, Navascués, Cavalcanti, Phys. Rev. Lett., 2014.

- ¹⁵Quintino, Vértesi, Brunner, Phys. Rev. Lett., 2014.
- ¹⁶Uola, Budroni, Gühne, Pellonpää, Phys. Rev. Lett. 2015. → () → () → () → () → ()

¹⁴Piani & Watrous, Phys. Rev. Lett., 2015.

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR(\{M_{a|x}^A\}_{x,a}) \ge SR(\{\rho_{a|x}\}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

$$\{M_{a|x}^{A}\} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Alice}}_{x} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Alice}}_{x} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Bob}}_{a|x} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR({M_{a|x}^A}_{x,a}) \ge SR({\rho_{a|x}}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

DI entanglement certification, quantification & beyond

Conclusion

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

$$\{M_{a|x}^{A}\} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Alice}}_{x} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Alice}}_{x} \bigoplus_{a}^{n \to -n} \underbrace{\operatorname{Bob}}_{a|x} = \operatorname{tr}_{A}(\rho M_{a|x}^{A} \otimes \mathbf{1}_{B})$$

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR(\{M_{a|x}^A\}_{x,a}) \ge SR(\{\rho_{a|x}\}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR({M_{a|x}^A}_{x,a}) \ge SR({\rho_{a|x}}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR({M_{a|x}^A}_{x,a}) \ge SR({\rho_{a|x}}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

Steerability & measurement incompatibility

Incompatibility robustness vs steering robustness

- The incompatibility of {*M*^A_{a|x}}_{x,a} can be quantified using incompatibility robustness (IR).
- It can be shown that $IR({M_{a|x}^A}_{x,a}) \ge SR({\rho_{a|x}}_{a,x})$.¹⁷
- Device-independent lower bound on SR({ρ_{a|x}}_{a,x}) can be computed via SDP ⇒ device-independent lower bound on on IR({M^A_{a|x}}_{x,a})
- Message #7: Steerability & measurement incompatibility can be estimated directly from observed P(a, b|x, y)

Self-testing

Self-testing of quantum devices: the idea

 Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices a

measurement devices — function as expected.

 Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

$$\begin{split} \|\Lambda_{\mathcal{A}}\otimes\Lambda_{\mathcal{B}}(\rho)-|\psi_{\text{target}}\rangle\langle\psi_{\text{target}}|_{\mathcal{AB}}\otimes|\varphi\rangle\langle\varphi|_{\mathcal{A}'\mathcal{B}'}\|\leq\epsilon,\\ \Lambda_{\mathcal{A}}(\mathcal{M}_{\text{def}})-|\psi_{\text{target}}\rangle\otimes\mathcal{O}_{\text{def}}^{\mathcal{B}'}\|\leq\epsilon, \quad \|\Lambda_{\mathcal{B}}(\mathcal{M}_{\text{def}}^{\mathcal{B}'})-|\psi_{\text{target}}^{\mathcal{B}'}\otimes\mathcal{O}_{\text{def}}^{\mathcal{B}'}\|\leq\epsilon. \end{split}$$

¹⁸Mayers & Yao, Quant. Inf. Comput. , 2004. < □ > < 图 > < E > < E > < E > < < 31/34
Self-testing

Self-testing of quantum devices: the idea

- Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices & measurement devices — function as expected
- Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

 $||\Lambda_{\mathcal{A}} \otimes \Lambda_{\mathcal{B}}(\rho) - ||\psi_{\text{target}}\rangle\langle\psi_{\text{target}}|_{\mathcal{A}\mathcal{B}} \otimes |\varphi\rangle\langle\varphi|_{\mathcal{A}'\mathcal{B}'}|| \leq \epsilon,$ $\wedge_{\mathcal{A}}(M_{\text{cl}}) - \otimes_{\mathcal{C}}(\varphi_{\text{cl}}) \otimes \mathcal{O}_{\text{cl}}^{\mathcal{C}}(\varphi_{\text{cl}}) = ||\Lambda_{\mathcal{B}}(M_{\text{cl}}^{\mathcal{C}}) - ||\Phi_{\text{cl}}^{\mathcal{C}} \otimes \mathcal{O}_{\text{cl}}^{\mathcal{C}}(\varphi_{\text{cl}})|| \leq \epsilon.$

¹⁸Mayers & Yao, Quant. Inf. Comput. , 2004. < □ > < 厘 > < ≡ > < ≡ > < ⊂ 31/34

Self-testing

Self-testing of quantum devices: the idea

- Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices & measurement devices — function as expected.
- Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

 $||\Lambda_A \otimes \Lambda_B(
ho) - ||\psi_{ ext{target}}|_{AB} \otimes |arphi\rangle\langle arphi|_{A'B'}|| \leq \epsilon,$ $||\Lambda_A(M_{ ext{obs}}) - ||\psi_{ ext{target}}|| \leq \epsilon = ||\Lambda_B(M_{ ext{obs}}) - ||\psi_{ ext{obs}}|| \leq \epsilon,$

¹⁸Mayers & Yao, Quant. Inf. Comput. , 2004. < □ > < 厘 > < ≡ > < ≡ > < ⊂ 31/34

Self-testing

Self-testing of quantum devices: the idea

- Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices & measurement devices — function as expected.
- Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

$$\begin{split} ||\Lambda_{\mathcal{A}}\otimes\Lambda_{\mathcal{B}}(\rho)-|\psi_{\text{target}}\rangle\langle\psi_{\text{target}}|_{\mathcal{A}\mathcal{B}}\otimes|\varphi\rangle\langle\varphi|_{\mathcal{A}'\mathcal{B}'}|| &\leq \epsilon, \\ ||\Lambda_{\mathcal{A}}(M^{\mathcal{A}}_{a|x})-\mathsf{M}^{\mathcal{A}}_{a|x}\otimes\mathcal{O}^{\mathcal{A}'}_{a|x}|| &\leq \epsilon, \quad ||\Lambda_{\mathcal{B}}(M^{\mathcal{B}}_{b|y})-\mathsf{M}^{\mathcal{B}}_{b|y}\otimes\mathcal{O}^{\mathcal{B}'}_{b|y}|| &\leq \epsilon \end{split}$$

Self-testing

Self-testing of quantum devices: the idea

- Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices & measurement devices — function as expected.
- Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

$$\begin{split} ||\Lambda_{\mathcal{A}} \otimes \Lambda_{\mathcal{B}}(\rho) - |\psi_{\text{target}}\rangle \langle \psi_{\text{target}}|_{\mathcal{A}\mathcal{B}} \otimes |\varphi\rangle \langle \varphi|_{\mathcal{A}'\mathcal{B}'}|| \leq \epsilon, \\ ||\Lambda_{\mathcal{A}}(M_{a|x}^{\mathcal{A}}) - \mathsf{M}_{a|x}^{\mathcal{A}} \otimes \mathcal{O}_{a|x}^{\mathcal{A}'}|| \leq \epsilon, \quad ||\Lambda_{\mathcal{B}}(M_{b|y}^{\mathcal{B}}) - \mathsf{M}_{b|y}^{\mathcal{B}} \otimes \mathcal{O}_{b|y}^{\mathcal{B}'}|| \leq \epsilon \end{split}$$

¹⁸Mayers & Yao, Quant. Inf. Comput., 2004. < □ > < @ > < ≣ > < ≣ > > ≡ - ∽ < ⇔ _{31/34}

Self-testing

Self-testing of quantum devices: the idea

- Self-testing:¹⁸ to certify directly from measurement statistics that quantum devices — preparation devices & measurement devices — function as expected.
- Given correlation P(a, b|x, y) or observed Bell violation, bound "quality" of devices by some distance measures:

$$\begin{split} ||\Lambda_{\mathcal{A}}\otimes\Lambda_{\mathcal{B}}(\rho)-|\psi_{\text{target}}\rangle\langle\psi_{\text{target}}|_{\mathcal{A}\mathcal{B}}\otimes|\varphi\rangle\langle\varphi|_{\mathcal{A}'\mathcal{B}'}|| &\leq \epsilon, \\ ||\Lambda_{\mathcal{A}}(\textit{M}^{\mathcal{A}}_{\textit{a}|x})-\textit{M}^{\mathcal{A}}_{\textit{a}|x}\otimes\textit{O}^{\mathcal{A}'}_{\textit{a}|x}|| &\leq \epsilon, \quad ||\Lambda_{\mathcal{B}}(\textit{M}^{\mathcal{B}}_{\textit{b}|y})-\textit{M}^{\mathcal{B}}_{\textit{b}|y}\otimes\textit{O}^{\mathcal{B}'}_{\textit{b}|y}|| &\leq \epsilon \end{split}$$

¹⁸Mayers & Yao, Quant. Inf. Comput. , 2004. < □ > < 吾 > < ≡ > < ≡ > ⊃ < ↔ 31/34

Self-testing

Self-testing of quantum devices: some latest developments

- Message #8: Self-testing of certain pure entangled states is possible when one observes near-maximal quantum violation of certain Bell inequalities.
- A general numerical technique "SWAP"¹⁹ technique (based on SDP) — can be applied to lower bound directly from observed correlations the fidelity with respect to the target state.

¹⁹Yang, Vértesi, Bancal, Scarani & Navascués, Phy 😹 Reve Letts 20 🛃 🕤 ແ 😪 32/34

Self-testing

Self-testing of quantum devices: some latest developments

- Message #8: Self-testing of certain pure entangled states is possible when one observes near-maximal good¹⁹ quantum violation of certain Bell inequalities.
- A general numerical technique "SWAP"²⁰ technique (based on SDP) — can be applied to lower bound directly from observed correlations the fidelity with respect to the target state.

¹⁹Kaniewski, Phys. Rev. Lett., 2016

²⁰Yang, Vértesi, Bancal, Scarani & Navascué**s, Physe Reve Letta 2014 თ**ილ 32/34

Self-testing

Self-testing of quantum devices: some latest developments

- Message #8: Self-testing of certain pure entangled states is possible when one observes near-maximal good¹⁹ quantum violation of certain Bell inequalities.
- A general numerical technique "SWAP"²⁰ technique (based on SDP) — can be applied to lower bound directly from observed correlations the fidelity with respect to the target state.

¹⁹Kaniewski, Phys. Rev. Lett., 2016

²⁰ Yang, Vértesi, Bancal, Scarani & Navascués, Phys. Rev. Lett., 2014 🔊 🤉 32/34

The	DI	paradigm
	oc	

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク < ⊙ 33/34

Conclusion & Outlook

The	DI	paradigm
000	ooc	

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク < ⊙ 33/34

Conclusion & Outlook

The	DI	paradigm
000	ooc	

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク < ⊙ 33/34

Conclusion & Outlook

Conclusion & Outlook

Summary & Outlook

Genuine multipartite entangled?

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Conclusion & Outlook

Summary & Outlook

Genuine multipartite entangled?

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

Summary & Outlook

Genuine multipartite entangled?

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

The	DI	paradigm
000	ooc	0000000

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ○ 33/34

Conclusion & Outlook

Conclusion & Outlook

Conclusion & Outlook

Conclusion & Outlook

Conclusion & Outlook

Conclusion & Outlook

The DI paradigm	DI entanglement certification, quantification & beyond	Conclusion ○●
For Further Reading		

References

- N. Brunner, S. Pironio, A. Acín, A. A. Méthot & V. Scarani, Phys. Rev. Lett. (2008).
- J.-D. Bancal, N. Gisin, Y.-C. Liang & S. Pironio, Phys. Rev. Lett. (2011).
- T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hoffmann & O. Gühne, Phys. Rev. Lett. (2013).
- M. Navascués, G. de la Torre & T. Vértesi, Phys. Rev. X (2014).
- T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani & M. Navascués, Phys. Rev. Lett. (2014).
- Y.-C. Liang, D. Rosset, J.-D. Bancal, G. Pütz, T. J. Barnea & N. Gisin, Phys. Rev. Lett. (2015).
- G. Tóth, T. Moroder & O. Gühne, Phys. Rev. Lett. (2015).
- S.-L. Chen, C. Budrondi, Y.-C. Liang & Y.-N. Chen, Phys. Rev. Lett. (2016).