8th International Workshop on Solid State Quantum Computing (IWSSQC) 2016

Valley qubits for quantum computing and communication

Speaker: Ming-Jay Yang 楊閔傑 Advisor: Yu-Shu Wu 吳玉書

Institute of Electronics Engineering Department of Electrical Engineering National Tsing-Hua University, Hsin-Chu, Taiwan

Outline

- 1. Introduction
 - ✓ Fundamentals of graphene
 - ✓ Valley pseudospin
- 2. Valley-based quantum computing
 - ✓ Encoding scheme: Valley pair qubit
 - ✓ Electrical qubit manipulation
- 3. Valley-based quantum communication
 - ✓ Quantum state transfer & Figure of merits
 - ✓ Setup: Valley pair qubit + cavities

[PRB <u>84</u>, 195463 (2011)]

[PRB 86, 045456 (2012)]

Candidates for solid-state quantum information processing

> Daniel Loss & DiVincenzo, Phys. Rev. A **(1998)** Kouwenhoven & Tarucha et al., Phys. Rev. B **(2003)**

Superconducting qubits

Devoret, et. al. (1998). Nakamura, et.al. (1999) Makhlin, et.al. (2001); Martinis, et.al. (2002)

Nuclear spin qubits (NV center)

M. V. G. Dutt *et al.,* Science **(2007)** G. D. Fuchs *et al.,* Nature Phys. **(2011)**

Introduction Graphene: fundamentals

This presentation focuses on <u>monolayer graphene</u> but the work has been extended to bilayer graphene (PRB <u>88</u>, 125422 (2013))

Introduction Graphene: theory

Pseudospin (τ_v) / Spin ($\vec{\sigma}$) Analogy

	Pseudospin	Spin
B ≠ 0	$\mu v_0 = e\hbar/2m^*$ Zeeman: $\tau v \mu v_0 B$ normal	$\mu_{\rm B} = e\hbar/2me$ <i>Zeeman:</i> $\vec{\sigma} \mu_{\rm B} \cdot \vec{B}$
ε≠0	VOI ~ $\mathbf{\tau}_{\mathbf{v}} \hat{z} \cdot \vec{\varepsilon} \times \vec{p}$ (Couple to K and K' valleys only)	SOI ~ $\vec{\sigma} \cdot \vec{\varepsilon} \times \vec{p}$
State mixing	Valley operator $\tau_{v} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Valley diagonal (conserving) contrasting phase $ K> \rightarrow exp(i \phi) K>$ $ K'> \rightarrow exp(-i \phi) K'>$	Spin operators $\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ Spin mixing (decoherence)

Outline

- 1. Introduction
 - ✓ Fundamentals of graphene
 - ✓ Valley pseudospin
- 2. Valley-based quantum computing
 - ✓ Encoding scheme: Valley pair qubit
 - ✓ Electrical qubit manipulation
- 3. Valley-based quantum communication [PRB 86, 045456 (2012)]
 - ✓ Quantum state transfer & Figure of merits
 - ✓ Setup: Valley pair qubit + cavities

[PRB <u>84</u>, 195463 (2011)]

9

Valley qubit pair: Two electrons in DQD

Using the analogy: two-pseudospin qubit(S/T_0) ~ two-spin qubit(S/T_0)

(J. M. Taylor et al, *Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins*, Nature Phys. **1**, 177 (2005))

Qubit Coherence

Valley qubit	characteristics
Decoherence channel	phonon-mediated relaxation
Quantum dot size: L	350 A
QD potential depth: Vo	70meV
Bnormal	100mT
Temperature	10K
Valley relaxation time	~O(ms)
qugate operation time $(\Omega x, \Omega z)$	~O(ns)

PRB <u>84</u>, 195463 (2011)

Outline

- 1. Introduction
 - ✓ Fundamentals of graphene
 - ✓ Valley pseudospin
- 2. Valley-based quantum computing
 - ✓ Encoding scheme: Valley pair qubit
 - ✓ Electrical qubit manipulation
- 3. Valley-based quantum communication
 - ✓ Quantum state transfer & Figure of merits
 - ✓ Setup: Valley pair qubit + cavities

[PRB <u>84</u>, 195463 (2011)]

[PRB <u>86</u>, 045456 (2012)]

"Graphene + Photon" Quantum Network

(graphene valley qubits)

PRB <u>86</u>, 045456 (2012)

(graphene valley qubits)

A faithful quantum state transfer

photon qubit valley qubit

e.g., $\alpha | \sigma +> + \beta | \sigma -> \rightarrow \alpha | K> + \beta | K'>$

requires:

There should be a physical selection rule providing a set of persistent mapping between different physical states.

The mapping mechanism offered by graphene: Approximate selection rule

PRB <u>86</u>, 045456 (2012)

To optimize the QST process: Valley pair qubit + double cavities

Figure of merits for QST

Yield

$$P = \sum_{\sigma,\tau,k_{2D}} \left| \phi_{\sigma\tau}^{output} \right|^2 = \sum_{k_{2D}} P_{k_{2D}}$$

$$\begin{aligned} \overline{\mathbf{Fidelity}} \\ F(\alpha,\beta) &= \sum_{k_{2D}} F_{k_{2D}} P_{k_{2D}} / P, \\ F_{k_{2D}} &\equiv \left\langle \Psi_{ideal}^{k_{2D}} \middle| \sum_{\sigma\tau,\sigma'\tau'} \phi_{\sigma\tau}^{output} \phi_{\sigma'\tau'}^{output*} \middle| \Psi_{ideal} \right\rangle / P_{k_{2D}} \end{aligned}$$

(Submitted to PRB)

Optimal conditions

(Submitted to PRB)

Setup parameters	Experimentally accessible conditions
Wph, ΔWph	1.6x10^5 GHz, 5GHz
B/A = D/C	0.04
A, C	45, 30 GHz
γse	1GHz
Qdbr, Qpc	550, 250
Yield, Fidelity	~0.998

SUMMARY

- Valley pseudospin and VOI
 - Being of "relativistic" origin, the mechanism is similar to the SOI with difference -- valley-diagonal (state-mixing free).
- Qubit manipulation (Bnormal ≠ 0)
 - a dc or ac electric field can be applied to modulate the orbital magnetic moment of a confined electron, creating a magnetic moment gradient in the DQD structure, in the presence of a static, uniform magnetic field.
 - Along with exchange coupling, a fast, all-electric qubit manipulation may be performed by standard electric gate operation, in the time scale $\sim O(ns)$.
- Quantum state transfer (Bnormal = 0)
 - In the absence of a normal magnetic field, the optical excitation in gapped graphene is symmetric, and obeys the selection rule.
 - Optimized QST with experimentally accessible conditions give promising valley-photon state transfer.