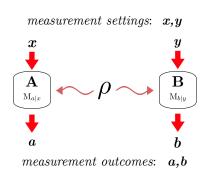
<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bridging the Theory and Experiment for Device-Indepedent Quantum Information

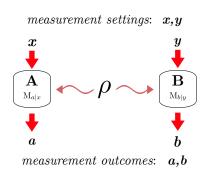
Pei-Sheng LIN

Department of Physics, National Cheng Kung University, Tainan

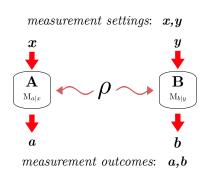
Yanbao Zhang^{2,3}, Denis Rosset¹, Yeong-Cherng Liang¹ ¹Department of Physics, National Cheng Kung University, Tainan. ²Institute for Quantum Computing, University of Waterloo, Canada ³Department of Physics and Astronomy, University of Waterloo, Canada



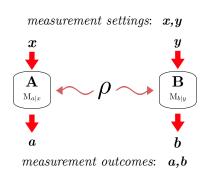
- Shared quantum state ρ , e.g., $\rho = |\psi^-\rangle\langle\psi^-|$
- Perform (e.g., spin) measurements described by POVM, {*M_{a|x}*}, {*M_{b|y}*}
- Register outcomes
- Born's rule: $\vec{P}_{Q}(a, b|x, y) = {$ tr $(M_{a|x} \otimes M_{b|y} \rho)$ $_{x,y,a,b}$
- Estimate expectation value from data, e.g., distribution of measurement outcome



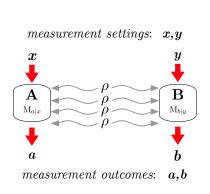
- Shared quantum state ρ , e.g., $\rho = |\psi^-\rangle\langle\psi^-|$
- Perform (e.g., spin) measurements described by POVM, {*M_{a|x}*}, {*M_{b|y}*}
- Register outcomes
- Born's rule: $\vec{P}_{Q}(a, b|x, y) = {$ tr $(M_{a|x} \otimes M_{b|y} \rho)$ $_{x,y,a,b}$
- Estimate expectation value from data, e.g., distribution of measurement outcome



- Shared quantum state ρ , e.g., $\rho = |\psi^-\rangle\langle\psi^-|$
- Perform (e.g., spin) measurements described by POVM, {*M_{a|x}*}, {*M_{b|y}*}
- Register outcomes
- Born's rule: $\vec{P}_{Q}(a, b|x, y) = {$ tr $(M_{a|x} \otimes M_{b|y} \rho)$ $_{x,y,a,b}$
- Estimate expectation value from data, e.g., distribution of measurement outcome

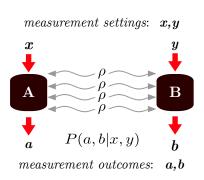


- Shared quantum state ρ , e.g., $\rho = |\psi^-\rangle\langle\psi^-|$
- Perform (e.g., spin) measurements described by POVM, {*M_{a|x}*}, {*M_{b|y}*}
- Register outcomes
- Born's rule: $\vec{P}_{Q}(a, b|x, y) = {$ tr $(M_{a|x} \otimes M_{b|y} \rho)$ $_{x,y,a,b}$
- Estimate expectation value from data, e.g., distribution of measurement outcome



- Shared quantum state ρ , e.g., $\rho = |\psi^-\rangle\langle\psi^-|$
- Perform (e.g., spin) measurements described by POVM, {*M_{a|x}*}, {*M_{b|y}*}
- Register outcomes
- Born's rule: $\vec{P}_{\mathcal{Q}}(a, b|x, y) =$ {tr $(M_{a|x} \otimes M_{b|y} \rho)$ } $_{x,y,a,b}$
- Estimate expectation value from data, e.g., distribution of measurement outcome

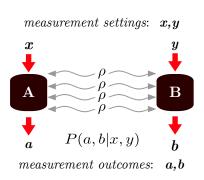
Quantum experiment



Device-independent paradigm

- Drop assumptions on devices
- Keep label of measurement settings by *x*, *y*; and outcomes by *a* and *b*
- Goal: use correlation {*P*(*a*, *x*|*x*, *y*)} to learn something nontrivial about *ρ* and the measurements

Quantum experiment



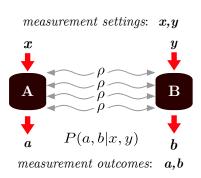
Device-independent paradigm

- Drop assumptions on devices
- Keep label of measurement settings by *x*, *y*; and outcomes by *a* and *b*

 Goal: use correlation {*P*(*a*, *x*|*x*, *y*)} to learn something nontrivial about *ρ* and the measurements

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三日 のへで 3/22

Quantum experiment



Device-independent paradigm

- Drop assumptions on devices
- Keep label of measurement settings by *x*, *y*; and outcomes by *a* and *b*
- Goal: use correlation {*P*(*a*, *x*|*x*, *y*)} to learn something nontrivial about *ρ* and the measurements

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三日 のへで 3/22

The problem

Relativistic causality

Non-Signaling conditions

For all *a*, *b*,

$$P(a|x,y) = \sum_{b} P(a,b|x,y) = \sum_{b} P(a,b|x,y') = P(a|x,y'), \ \forall \ y \neq y'$$
$$P(b|x,y) = \sum_{a} P(a,b|x,y) = \sum_{a} P(a,b|x',y) = P(b|x',y), \ \forall \ x \neq x'$$

- Probability distribution cannot be affected by each other's measurement choice
- If violated, we can use the difference in correlations to send signals faster than light

The problem

Relativistic causality

Non-Signaling conditions

For all *a*, *b*,

$$P(a|x,y) = \sum_{b} P(a,b|x,y) = \sum_{b} P(a,b|x,y') = P(a|x,y'), \ \forall \ y \neq y'$$
$$P(b|x,y) = \sum_{a} P(a,b|x,y) = \sum_{a} P(a,b|x',y) = P(b|x',y), \ \forall \ x \neq x'$$

- Probability distribution cannot be affected by each other's measurement choice
- If violated, we can use the difference in correlations to send signals faster than light

The problem

Relativistic causality

Non-Signaling conditions

For all *a*, *b*,

$$P(a|x,y) = \sum_{b} P(a,b|x,y) = \sum_{b} P(a,b|x,y') = P(a|x,y'), \ \forall \ y \neq y'$$
$$P(b|x,y) = \sum_{a} P(a,b|x,y) = \sum_{a} P(a,b|x',y) = P(b|x',y), \ \forall \ x \neq x'$$

- Probability distribution cannot be affected by each other's measurement choice
- If violated, we can use the difference in correlations to send signals faster than light

The problem

Relativistic causality

Non-Signaling conditions

For all *a*, *b*,

$$P(a|x,y) = \sum_{b} P(a,b|x,y) = \sum_{b} P(a,b|x,y') = P(a|x,y'), \ \forall \ y \neq y'$$
$$P(b|x,y) = \sum_{a} P(a,b|x,y) = \sum_{a} P(a,b|x',y) = P(b|x',y), \ \forall \ x \neq x'$$

- Probability distribution cannot be affected by each other's measurement choice
- If violated, we can use the difference in correlations to send signals faster than light

Relativistic causality

Non-Signaling conditions

For all *a*, *b*,

$$P(a|x,y) = \sum_{b} P(a,b|x,y) = \sum_{b} P(a,b|x,y') = P(a|x,y'), \ \forall \ y \neq y'$$
$$P(b|x,y) = \sum_{a} P(a,b|x,y) = \sum_{a} P(a,b|x',y) = P(b|x',y), \ \forall \ x \neq x'$$

- Probability distribution cannot be affected by each other's measurement choice
- If violated, we can use the difference in correlations to send signals faster than light

<ロ> < 団> < 団> < 目> < 目> 三目目 のへで 5/22

The problem

Statistical fluctuations due to finite statistics

An ideal coin,

$$P_{ ext{Ideal}}(H) = 0.5, \, P_{ ext{Ideal}}(T) = 0.5$$

In experiment, correlation is estimated by:

$$P_{\text{Obs}}(H) = \frac{N(H)}{N(H) + N(T)}, \ P_{\text{Obs}}(T) = \frac{N(T)}{N(H) + N(T)}$$

- Due to finite statistics, $P_{Obs} \neq P_{Ideal}$
- When sample size (*N*) $ightarrow \infty$, $P_{
 m obs}
 ightarrow P_{
 m Ideal}$
- The same kind of deviation applies to the observed distribution $\vec{P}_{obs}(a, b|x, y)$ and the ideal quantum distribution $\vec{P}_Q(a, b|x, y)$

<ロ> < 団> < 団> < 目> < 目> 三目目 のへで 5/22

The problem

Statistical fluctuations due to finite statistics

An ideal coin,

$$P_{ ext{Ideal}}(H) = 0.5, \ P_{ ext{Ideal}}(T) = 0.5$$

In experiment, correlation is estimated by:

$$P_{ ext{Obs}}(H) = rac{N(H)}{N(H) + N(T)}, \ P_{ ext{Obs}}(T) = rac{N(T)}{N(H) + N(T)}$$

- Due to finite statistics, $P_{Obs} \neq P_{Ideal}$
- When sample size (N) $ightarrow \infty, P_{ ext{obs}}
 ightarrow P_{ ext{ldeal}}$
- The same kind of deviation applies to the observed distribution $\vec{P}_{obs}(a, b|x, y)$ and the ideal quantum distribution $\vec{P}_Q(a, b|x, y)$

Statistical fluctuations due to finite statistics

An ideal coin,

$$P_{ ext{Ideal}}(H) = 0.5, \ P_{ ext{Ideal}}(T) = 0.5$$

In experiment, correlation is estimated by:

$$P_{ ext{Obs}}(H) = rac{N(H)}{N(H) + N(T)}, \ P_{ ext{Obs}}(T) = rac{N(T)}{N(H) + N(T)}$$

• Due to finite statistics, $P_{\text{Obs}} \neq P_{\text{Ideal}}$

- When sample size (N) $ightarrow \infty, P_{
 m Obs}
 ightarrow P_{
 m Ideal}$
- The same kind of deviation applies to the observed distribution $\vec{P}_{\text{Obs}}(a, b|x, y)$ and the ideal quantum distribution $\vec{P}_{\mathcal{Q}}(a, b|x, y)$

<ロ> < 団> < 団> < 目> < 目> 三目目 のへで 5/22

The problem

Statistical fluctuations due to finite statistics

An ideal coin,

$$P_{ ext{Ideal}}(H) = 0.5, \ P_{ ext{Ideal}}(T) = 0.5$$

In experiment, correlation is estimated by:

$$P_{ ext{Obs}}(H) = rac{N(H)}{N(H) + N(T)}, \ P_{ ext{Obs}}(T) = rac{N(T)}{N(H) + N(T)}$$

- Due to finite statistics, $P_{\text{Obs}} \neq P_{\text{Ideal}}$
- When sample size (*N*) $ightarrow \infty$, $P_{
 m Obs}
 ightarrow P_{
 m Ideal}$
- The same kind of deviation applies to the observed distribution $\vec{P}_{Obs}(a, b|x, y)$ and the ideal quantum distribution $\vec{P}_{Q}(a, b|x, y)$

Statistical fluctuations due to finite statistics

An ideal coin,

$$P_{ ext{Ideal}}(H) = 0.5, \ P_{ ext{Ideal}}(T) = 0.5$$

In experiment, correlation is estimated by:

$$P_{ ext{Obs}}(H) = rac{N(H)}{N(H) + N(T)}, \ P_{ ext{Obs}}(T) = rac{N(T)}{N(H) + N(T)}$$

- Due to finite statistics, $P_{\text{Obs}} \neq P_{\text{Ideal}}$
- When sample size (*N*) $ightarrow \infty$, $P_{
 m Obs}
 ightarrow P_{
 m Ideal}$
- The same kind of deviation applies to the observed distribution $\vec{P}_{\text{Obs}}(a, b|x, y)$ and the ideal quantum distribution $\vec{P}_{\mathcal{Q}}(a, b|x, y)$

Dealing with the difference between theory and practice

• In experiment, due to finite statistics,

$$P_{ ext{Obs}}(a,b|x,y) = rac{N(a,b,x,y)}{N(x,y)}$$

- Device-independent quantum information (DIQI) utilizes only the correlations, $\vec{P}(a, b|x, y)$, to arrive at conclusions
- Theoretical tools developed for DIQI assume that $\vec{P}(a, b|x, y)$ obeys the non-signaling condition
- A gap between raw experimental data and theoretical tools
- Our goal: To bridge this gap

Dealing with the difference between theory and practice

In experiment, due to finite statistics,

$$P_{ ext{Obs}}(a,b|x,y) = rac{N(a,b,x,y)}{N(x,y)}$$

- Device-independent quantum information (DIQI) utilizes only the correlations, $\vec{P}(a, b|x, y)$, to arrive at conclusions
- Theoretical tools developed for DIQI assume that $\vec{P}(a, b|x, y)$ obeys the non-signaling condition
- A gap between raw experimental data and theoretical tools
- Our goal: To bridge this gap

Dealing with the difference between theory and practice

• In experiment, due to finite statistics,

$$P_{ ext{Obs}}(a,b|x,y) = rac{N(a,b,x,y)}{N(x,y)}$$

- Device-independent quantum information (DIQI) utilizes only the correlations, $\vec{P}(a, b|x, y)$, to arrive at conclusions
- Theoretical tools developed for DIQI assume that $\vec{P}(a, b|x, y)$ obeys the non-signaling condition
- A gap between raw experimental data and theoretical tools
- Our goal: To bridge this gap

Dealing with the difference between theory and practice

• In experiment, due to finite statistics,

$$P_{ ext{Obs}}(a,b|x,y) = rac{N(a,b,x,y)}{N(x,y)}$$

- Device-independent quantum information (DIQI) utilizes only the correlations, $\vec{P}(a, b|x, y)$, to arrive at conclusions
- Theoretical tools developed for DIQI assume that $\vec{P}(a, b|x, y)$ obeys the non-signaling condition
- A gap between raw experimental data and theoretical tools
 Our goal: To bridge this gap

Dealing with the difference between theory and practice

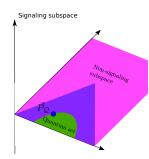
• In experiment, due to finite statistics,

$$P_{ ext{Obs}}(a,b|x,y) = rac{N(a,b,x,y)}{N(x,y)}$$

- Device-independent quantum information (DIQI) utilizes only the correlations, $\vec{P}(a, b|x, y)$, to arrive at conclusions
- Theoretical tools developed for DIQI assume that $\vec{P}(a, b|x, y)$ obeys the non-signaling condition
- A gap between raw experimental data and theoretical tools
- Our goal: To bridge this gap

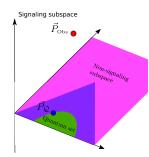
Simulating quantum experiment

- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P_Q
 - Estimate \vec{P}_{Obs}
 - Post-process P
 ^{Obs} to obtain P
 ^{proc} satisfying the non-signaling conditions



Simulating quantum experiment

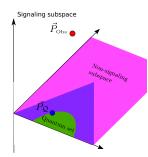
- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_Q , e.g., \vec{P}_Q^{CHSF}
 - Simulate the outcomes of the experiment according to P
 _Q
 - Estimate $\vec{P}_{\rm Obs}$
 - Post-process P
 ^C
 Obs to obtain P
 ^{proc}
 satisfying
 the non-signaling conditions



<□ > < @ > < 분 > < 분 > 분 | = < < </p>

Simulating quantum experiment

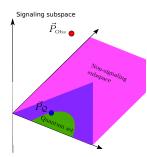
- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P_Q [Sample size, e.g., 10, 10², ... 10¹⁵]
 - Estimate \vec{P}_{Obs}
 - Post-process P
 ^{Obs} to obtain P
 ^{proc} satisfying the non-signaling conditions



(ロ) (型) (注) (注) (三) (1/2)

Simulating quantum experiment

- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P_Q
 [Sample size, e.g., 10, 10², ... 10¹⁵]
 - Estimate \vec{P}_{Obs}
 - Post-process P
 ^{Obs} to obtain P
 ^{proc} satisfying the non-signaling conditions



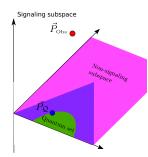
<□ > < @ > < 분 > < 분 > 분 | = < < </p>

Simulating quantum experiment

- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to $\vec{P}_{\mathcal{Q}}$

[Sample size, e.g., $10, 10^2, \dots 10^{15}$]

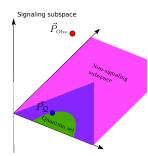
- Estimate \vec{P}_{Obs}
- Post-process \vec{P}_{Obs} to obtain $\vec{P}_{\text{method}}^{\text{proc}}$ satisfying the non-signaling conditions



(ロ) (型) (注) (注) (三) (1/2)

Simulating quantum experiment

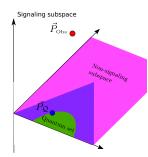
- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P
 _Q
 [Sample size, e.g., 10, 10², ... 10¹⁵]
 - Estimate \vec{P}_{Obs}
 - Post-process P
 ^{Obs} to obtain P
 ^{proc} satisfying the non-signaling conditions



<□ > < @ > < 분 > < 분 > 분 | = < < </p>

Simulating quantum experiment

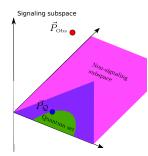
- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P
 _Q
 [Sample size, e.g., 10, 10², ... 10¹⁵]
 - Estimate P_{Obs}
 - Post-process P
 ^{Obs} to obtain P
 ^{proc} satisfying the non-signaling conditions



(ロ) (型) (注) (注) (三) (1/2)

Simulating quantum experiment

- Ideal $\vec{P}_{Q}(a, b|x, y) = \operatorname{tr} \left(M_{a|x} \otimes M_{b|y} \rho \right)$
- Experimental data, $\vec{P}_{Obs}(a, b|x, y) = \frac{N(a, b, x, y)}{N(x, y)}$
- Numerical simulation:
 - Consider different \vec{P}_{Q} , e.g., \vec{P}_{Q}^{CHSH}
 - Simulate the outcomes of the experiment according to P
 _Q [Sample size, e.g., 10, 10², ... 10¹⁵]
 - Estimate P_{Obs}
 - Post-process \vec{P}_{Obs} to obtain $\vec{P}_{\text{method}}^{\text{proc}}$ satisfying the non-signaling conditions



<ロ> <同> < 目> < 目> < 目> < 目> < 目< のへで 7/22</p>

Post-processing methods

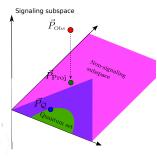
Projection¹ : Project P_{obs} to non-signaling subspace

• $\vec{P}_{Obs} = \vec{P}_{NS} \oplus \vec{P}_{S}$

earest quantum approximation² (NQA)

 $\|m{P}_{\mathcal{Q}_n}-m{P}_{\mathsf{Obs}}\|_{L_2}$ is minimal

Minimizing Kullback-Leibler (KL) divergence³



¹Renou et al., arXiv:1610.01833

²Schwarz *et al.*, NJP (2016) ³Zhang *et al.*, PRA (2013)

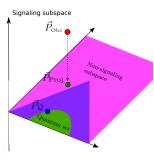
Post-processing methods

•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

earest quantum approximation² (NQA)

 $P_{\mathcal{Q}_n} - P_{Obs} \|_{L_2}$ is minima

Minimizing Kullback-Leibler (KL) divergence³



<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三日 のへで 8/22

¹Renou *et al.*, arXiv:1610.01833

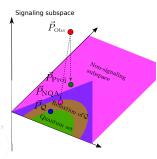
²Schwarz *et al.*, NJP (2016) ³Zhang *et al.*, PBA (2013)

Post-processing methods

Projection¹ : Project P_{obs} to non-signaling subspace

•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

- Nearest quantum approximation² (NQA)
 - $\|\vec{P}_{Q_n} \vec{P}_{Obs}\|_{L_2}$ is minimal
- Minimizing Kullback-Leibler (KL) divergence³



<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三日 のへで 8/22

¹Renou *et al.*, arXiv:1610.01833 ²Schwarz *et al.*, NJP (2016)

³Zhang *et al.*, PRA (2013)

Post-processing methods

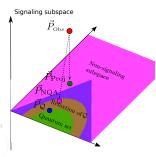
Projection¹ : Project P_{obs} to non-signaling subspace

•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

Nearest quantum approximation² (NQA)

• $\|\vec{P}_{Q_n} - \vec{P}_{Obs}\|_{L_2}$ is minimal

Minimizing Kullback-Leibler (KL) divergence³,



<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三日 のへで 8/22

¹Renou *et al.*, arXiv:1610.01833 ²Schwarz *et al.*, NJP (2016)

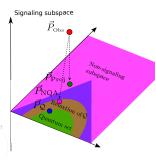
³Zhang *et al.*, PRA (2013)

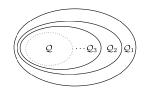
Post-processing methods

Projection¹ : Project P_{obs} to non-signaling subspace

•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

- Nearest quantum approximation² (NQA)
 - $\|\vec{P}_{Q_n} \vec{P}_{Obs}\|_{L_2}$ is minimal
- Minimizing Kullback-Leibler (KL) divergence³,
 Dev (Powlike) = State Powless logs (Powless)





¹Renou *et al.*, arXiv:1610.01833 ²Schwarz *et al.*, NJP (2016)

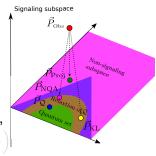
³Zhang *et al.*, PRA (2013)

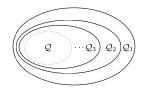
Post-processing methods

Projection¹ : Project P_{obs} to non-signaling subspace

•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

- Nearest quantum approximation² (NQA)
 - $\|\vec{P}_{Q_n} \vec{P}_{Obs}\|_{L_2}$ is minimal
- Minimizing Kullback-Leibler (KL) divergence³,





¹Renou *et al.*, arXiv:1610.01833 ²Schwarz *et al.*, NJP (2016) ³Zhang *et al.*, PRA (2013)

Post-processing methods

Projection¹ : Project P_{obs} to non-signaling subspace

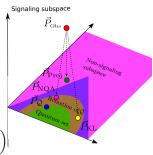
•
$$\vec{P}_{\text{Obs}} = \vec{P}_{\text{NS}} \oplus \vec{P}_{\text{S}}$$

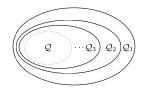
Nearest quantum approximation² (NQA)

• $\|\vec{P}_{Q_n} - \vec{P}_{Obs}\|_{L_2}$ is minimal

Minimizing Kullback-Leibler (KL) divergence³,

•
$$D_{\text{KL}}\left(\vec{P}_{\text{Obs}}\|\vec{P}_{\text{KL}}\right) \equiv \sum_{a,b,x,y} P_{x,y} P_{\text{Obs}} \log_2\left(\frac{P_{\text{Obs}}}{P_{\text{KL}}}\right)$$





¹Renou *et al.*, arXiv:1610.01833 ²Schwarz *et al.*, NJP (2016) ³Zhang *et al.*, PRA (2013)

<□ > < @ > < 분 > < 분 > 분 | = < < </p>

Details

Testing against desired features

Criteria:

- Uniqueness :
 - Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?
- Convergence :
 - How quickly does P^{proc}_{method} converge to P
 _Q as sample size increases?
- Membership :
 - How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
 - Measure the probability of lying in $Q_n^{4,5}$

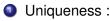
⁷Navascués *et al.*, PRL (2007)

^oMorder *et al.*, PRL (2013)

Details

Testing against desired features

Criteria:



• Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?

Convergence :

How quickly does P^{proc}_{method} converge to P^Q as sample size increases?

Membership :

- How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
- Measure the probability of lying in $\mathcal{Q}_n^{4,5}$

⁺Navascués *et al.*, PRL (2007)

⁵Morder *et al.*, PRL (2013)

Details

Testing against desired features

Criteria:

- Uniqueness :
 - Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?
- Convergence :
 - How quickly does P^{proc}_{method} converge to P
 _Q as sample size increases?

Membership :

- How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
- Measure the probability of lying in $\mathcal{Q}_n^{4,5}$

⁺Navascués *et al.*, PRL (2007)

⁵Morder *et al.*, PRL (2013)

Details

Testing against desired features

Criteria:

- Uniqueness :
 - Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?
- 2 Convergence :
 - How quickly does P
 ^{proc}_{method} converge to P
 _Q as sample size increases?
- Membership :
 - How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
 - Measure the probability of lying in $\mathcal{Q}_n^{4,5}$

⁺Navascués *et al.*, PRL (2007)

⁵Morder *et al.*, PRL (2013)

Details

Testing against desired features

Criteria:

- Uniqueness :
 - Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?
- Convergence :
 - How quickly does P
 ^{proc}_{method} converge to P
 _Q as sample size increases?
- Membership :
 - How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
 - Measure the probability of lying in $\mathcal{Q}_n^{4,5}$

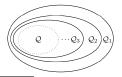
⁺Navascués *et al.*, PRL (2007)

⁵Morder *et al.*, PRL (2013)

Testing against desired features

Criteria:

- Uniqueness :
 - Given \vec{P}_{Obs} , is \vec{P}_{method}^{proc} unique?
- Onvergence :
 - How quickly does P
 ^{proc}_{method} converge to P
 _Q as sample size increases?
- Membership :
 - How likely is $\vec{P}_{\text{method}}^{\text{proc}}$ in Q?
 - Measure the probability of lying in Q_n^{4,5}



⁴Navascués *et al.*, PRL (2007)

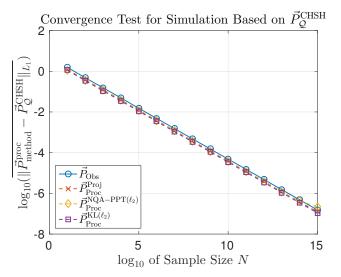
⁵Morder et al., PRL (2013)

Introductio	n

Methodology

Results

Convergence criterion- \vec{P}_{q}^{CHSH}



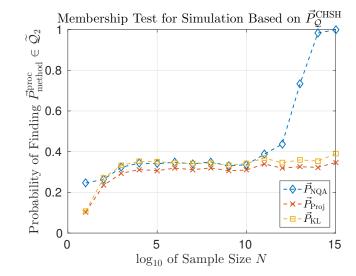
< □ > < @ > < ≣ > < ≣ > Ξ| = のへで 10/22

Introdu	uction

Methodology

Results

Membership criterion- \vec{P}_{o}^{CHSH}



◆□ → ◆□ → ◆ ■ → ◆ ■ ■ ・ ● への 11/22

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

Method & Desiderata	NQA	Projection	KL divergence
Uniqueness	\checkmark	1	\checkmark
Convergence	✓(?)	1	1
Membership	Best	Good	Better

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

Method & Desiderata	NQA	Projection	KL divergence
Uniqueness	1	1	1
Convergence	✓(?)	1	\checkmark
Membership	Best	Good	Better

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

Method & Desiderata	NQA	Projection	KL divergence
Uniqueness	1	1	1
Convergence	√(?)	1	1
Membership	Best	Good	Better

- Finite statistics leads to "signaling" correlations, it's unavoidable even if equiped with perfect system.
- A gap between experimental data and usage of theoretical tools, due to violation of the non-signaling condition.

Method & Desiderata	NQA	Projection	KL divergence
Uniqueness	1	1	1
Convergence	√(?)	1	✓
Membership	Best	Good	Better