

Introduction to Quantum Optimal Control

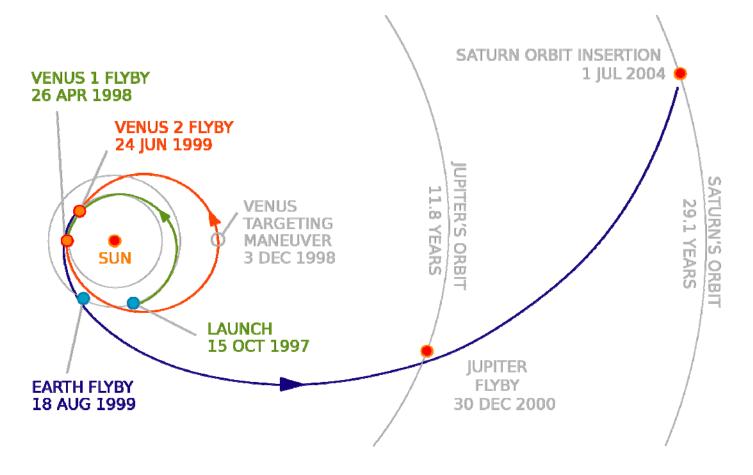
Shai Machnes

S. J. Glaser, et al., *The European Physical Journal* D 69.12 (2015): 1-24 C. P. Koch, *Journal of Physics: Condensed Matter* 28.21 (2016): 213001

Overview

- What is Optimal Control
- Quantum Optimal Control
- Controllability
- Speed limits
- Avoiding subspaces
 - Adiabaticity
 - Shortcuts to Adiabaticity
- Optimization landscapes
 - Local traps
 - Dimensionality
- QOC Workflow

- Robustness
- Requirements from QOC
- QOC Dos and Don'ts
- QOC algorithms
 - CRAB
 - PMP
 - GRAPE
 - Krotov
 - GOAT
- Constraints
- Multi-goal optimization
- Example


What is Optimal Control?

Congratulations ! You just saved 0.4 seconds

What is Optimal Control?

Reach Saturn, minimize fuel

Cassini Huygens trajectory [NASA / JPL]

What is Optimal Control?

Waiter race (1949)

Quantum Optimal Control

Given

 $H(t) = H_0 + \sum_{k=1}^{K} c_k(t) H_k$

Find control fields

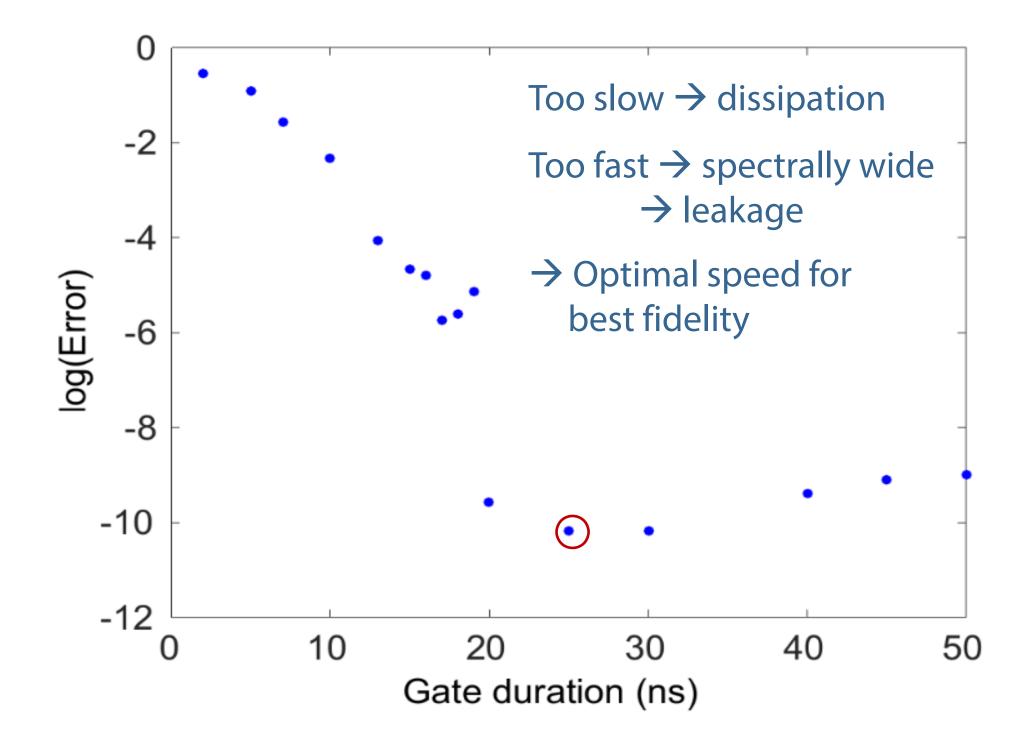
 $c_{k}\left(t
ight)$

such that we

 transform some initial state to some final state, or

generate a unitary gate
 (i.e. rotation of states), or ...

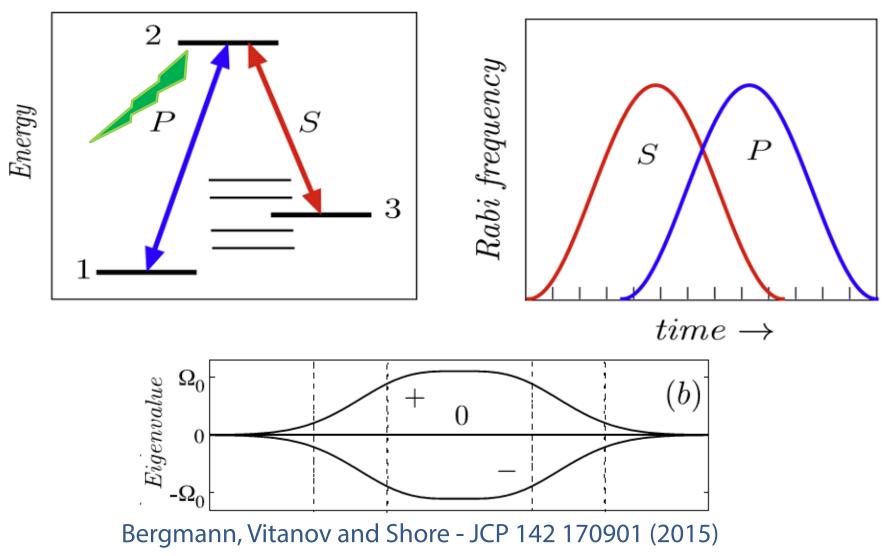
Quantum Optimal Control $g(\bar{\alpha}) = 1 - \frac{1}{\dim(U)} \left| U_{goal}^{\dagger} U(\bar{\alpha}, T) \right|$ Given $U(\bar{\boldsymbol{\alpha}},T) = \mathbb{T}\exp\left(\int_0^T -\frac{i}{\hbar}H(\bar{\boldsymbol{\alpha}},t)\,dt\right)$ $H(\bar{\boldsymbol{\alpha}},t) = H_0 + \sum_{k=1}^{K} c_k(\bar{\boldsymbol{\alpha}},t) H_k$ $c_k(\bar{\alpha}, t) = \sum_{i=1}^m A_{k,m} \exp\left(-(t - \tau_{k,m})^2 / \sigma_{k,m}^2\right)$ $\bar{\alpha} = \{A_{k,m}, \tau_{k,m}, \sigma_{k,m}\}_{k=1...K, j=1...m}$ $|A_{k,m}| \leq 500 \text{MHz}$ Find \bar{a} such that $g(\bar{a})$ minimal

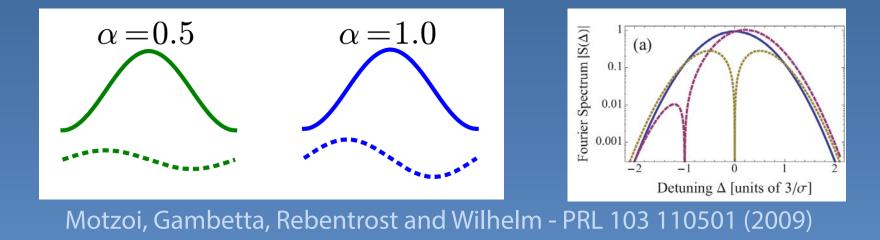

Controllability

- Can we implement any gate we wish?
- Can we implement a specific gate?
- Coherent dynamics: Closure of H-s: $\{H_j, [H_j, H_k], [H_j, [H_k, H_m]], \ldots\}_{j,k,m,\ldots=0...K}$ $e^A e^B = e^{A+B+\frac{1}{2}[A,B]+\frac{1}{12}([A,[A,B]]+[[A,B],B])+\ldots}$
- Open systems: open question

Quantum Speed Limit

- How fast can we rotate state to state?
 Gate = multiple concurrent rotations
- Bounded for time indep systems: Mandelstam-Tamm, Margolus-Levitin
- Open systems: open question
- Controllable without drift \rightarrow no speed limit
- Lindblad ops not controllable \rightarrow speed limits

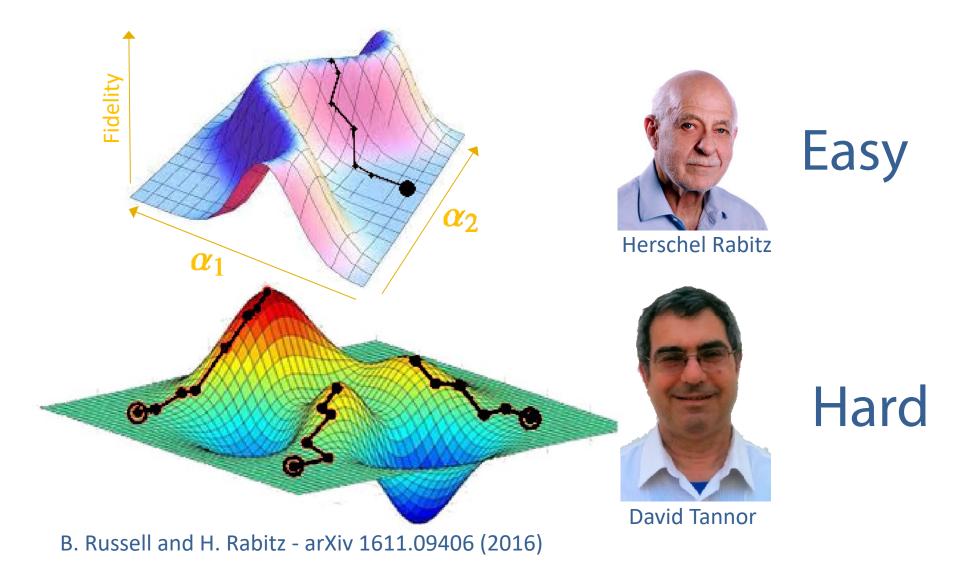



Adiabaticity

STIRAP – Stimulated Raman/Rapid Adiabatic Passage

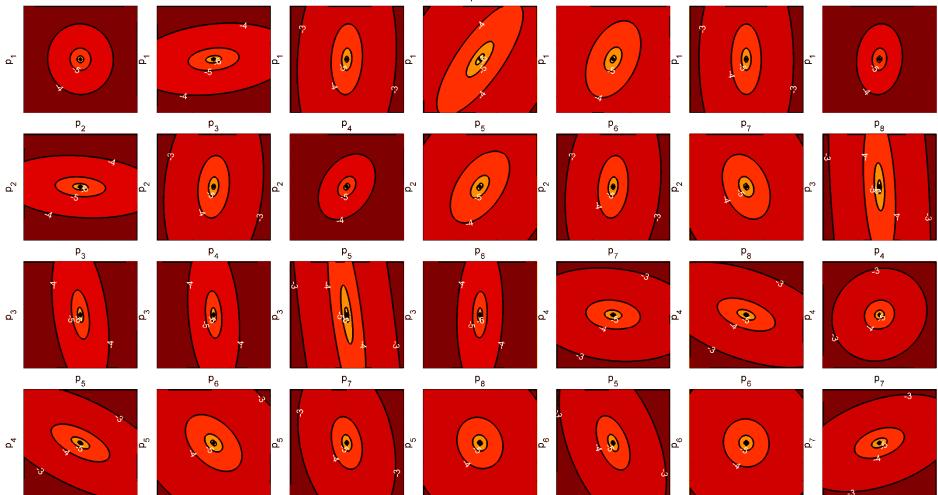
Adiabaticity

- Avoid a subspace (e.g. leaky state)
 - Remain on dark sub-manifolds of the driven system
 - Slow remain on momentary eigenmodes
- DRAG: Avoid certain frequencies



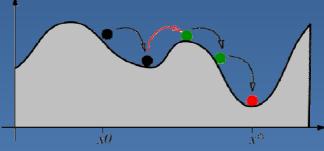
Shortcuts to Adiabaticity

- Start and end within a subspace
- During the pulse go wider

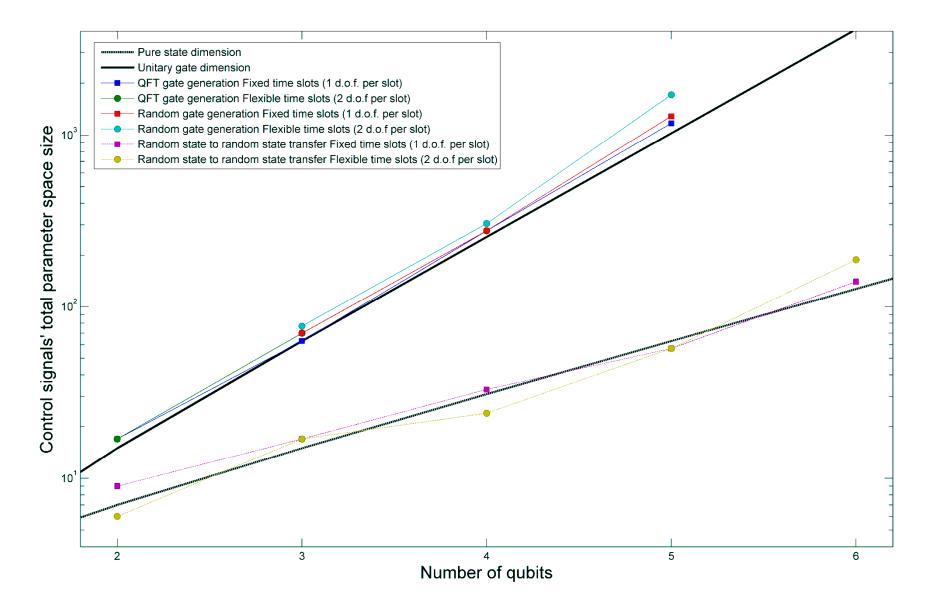


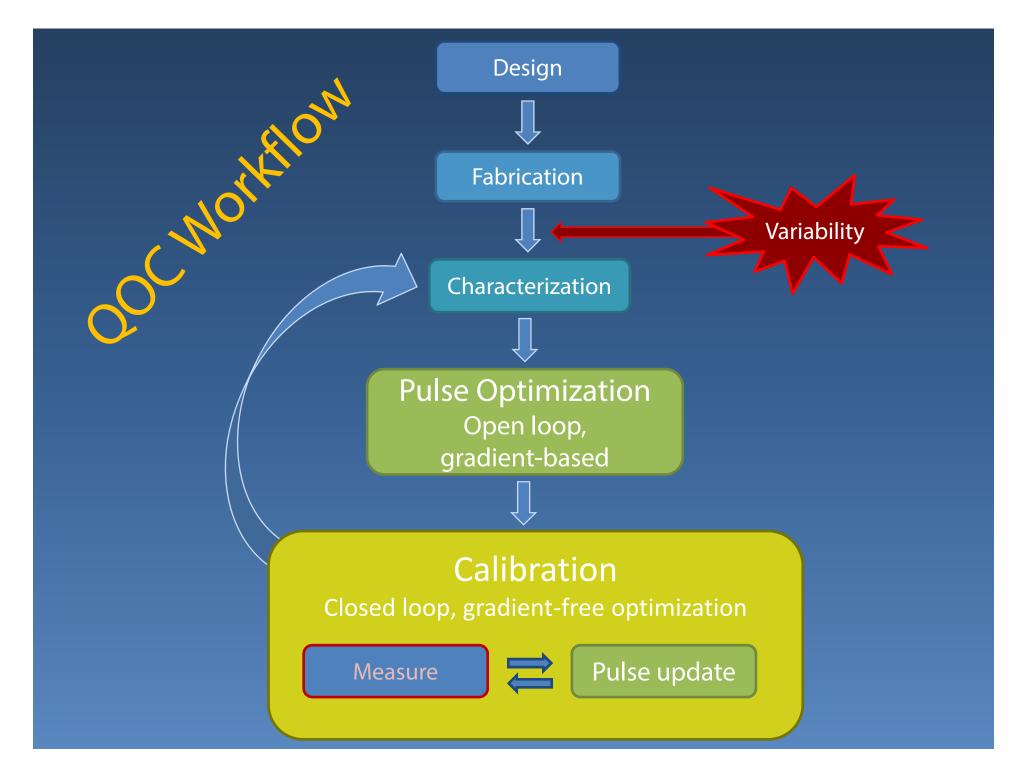
Optimization Landscapes

Constrains \rightarrow Local traps


2D slices of 8 dimensional control space around local minima of 0.0067037

Strategies for handling local minima


- Repeat search many times, starting at different random points.
- Use appropriate algorithms


 Simulated annealing
 Stochastic tunneling
 Parallel tempering
 Genetic algorithms

 Use GOAT for multi-goal, constrained, optimization

Numbernoe paramosf set ailchespage size

Requirements from QOC

- Optimize state transfer, gate generation, etc.
- Unitary, Lindblad, non-Markovian, etc.

Flexible

- Any control ansatz and any constraints
- Filters (Gaussian, band-pass, etc)
- Multi-goal
- more

Quick

Accurate

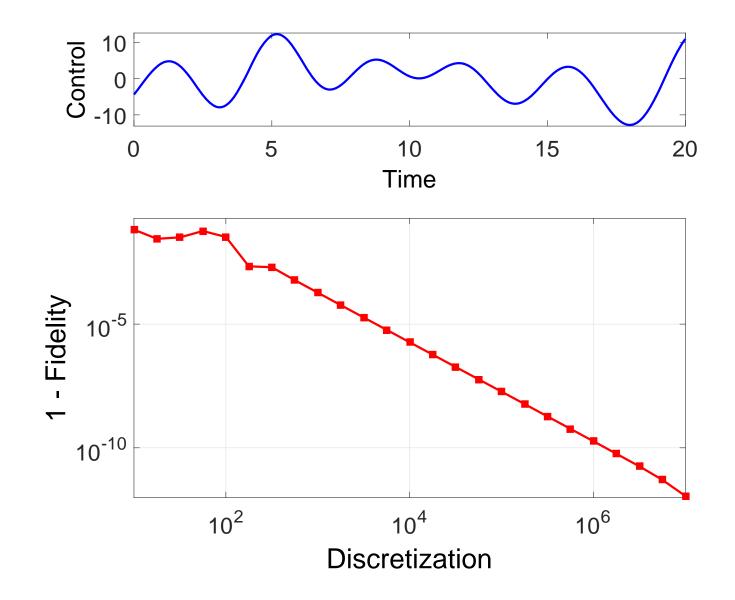
Constraints from Experiment and Ansatz

Experimentally achievable controls (given)

- Search space must faithfully describe the freedoms / limitations of the experiment.
- Support for non-linear filters (bandpass, etc).
- Every parameter is constrained
- Example: AWG + lowpass filter + IQ mixer
- Control ansatz (chosen)
 - Fourier, Erf, Hann, Gaussian, PWC, etc.
 - Calibration \rightarrow Use only a few components / pulses

Robustness / Time-scales

Static = Characterization gaps


- Fabrication variability
- Over-simplified model
- Metrology / tomography gaps
- Slow = Drifts
- Fast = Noise (in controls/system) Robust pulses
 - Ensemble optimization
 - Multi-goal: Invariability to first-order change of model parameters

Don't

 Piece-wise-constant (PWC) is a poor approximation for bandwidth-limited controls.

- Gradient based optimization is much faster
- Use analytic controls
 - You only need a few parameters
 - You only want a few parameters
 - Flexible: ansatz and constraints

PWC is a poor approx. of smooth controls

• Don't

 Piece-wise-constant (PWC) is a poor approximation for bandwidth-limited controls.

Do

- Gradient based optimization is *much* faster
- Use analytic controls
 - You only need a few parameters
 - You only want a few parameters
 - Flexible: ansatz and constraints

• Don't

 Piece-wise-constant (PWC) is a poor approximation for bandwidth-limited controls.

- Gradient based optimization is much faster
- Use analytic controls
 - You only need a few parameters
 - You only want a few parameters
 - Flexible: ansatz and constraints

• Don't

 Piece-wise-constant (PWC) is a poor approximation for bandwidth-limited controls.

- Gradient based optimization is much faster
- Use analytic controls
 - You only need a few parameters
 - You only want a few parameters
 - Flexible: ansatz and constraints

• Don't

 Piece-wise-constant (PWC) is a poor approximation for bandwidth-limited controls.

- Gradient based optimization is much faster
- Use analytic controls
 - You only need a few parameters
 - You only want a few parameters
 - Flexible: ansatz and constraints

QOC Algorithms

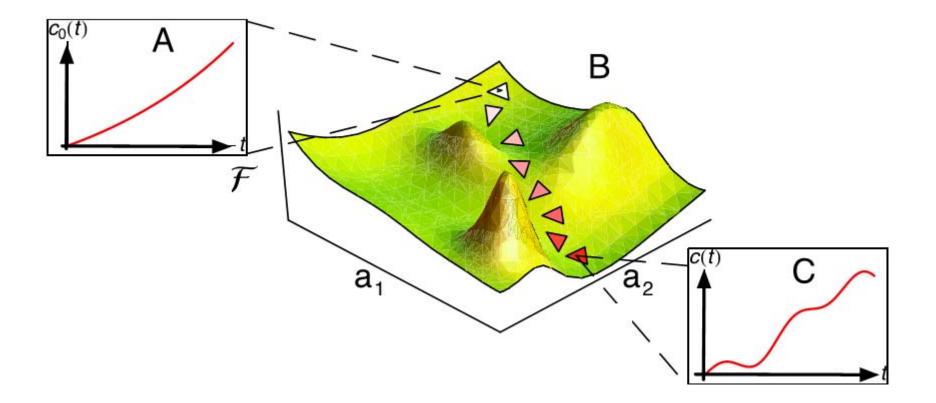
Direct methods - No gradient information

Variational methods - Gradient based

QOC Algorithms – Direct

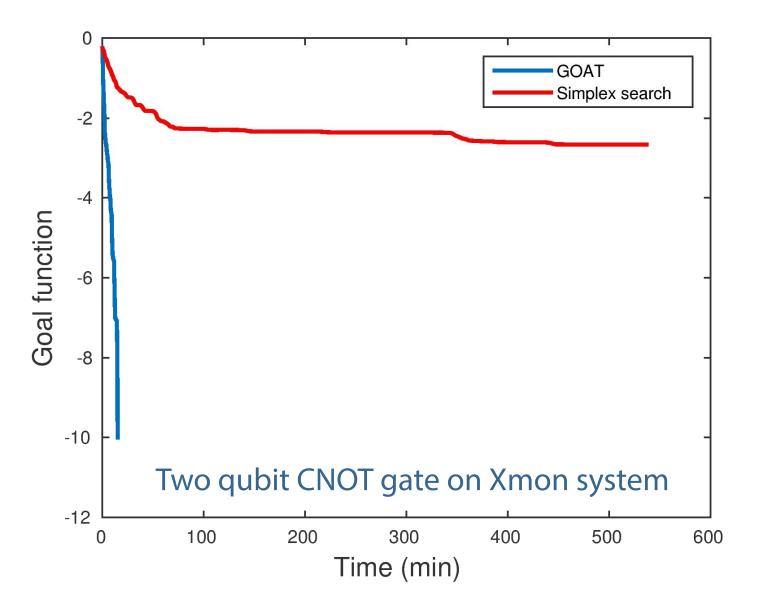
Direct methods - No gradient information

- Pro
 - Only require black-box goal function evaluators
 - Closed loop calibration
 - Can use tensor networks propagators (for many-body problems)
 - Relatively simple
- Con
 - Slow


Very slow in high dimension search spaces

QOC Algorithms - Direct Direct methods - No gradient information

- Deterministic CRAB:
 - Simplex search (e.g. Nelder-Mead)
 - Arbitrary analytic controls (normally Fourier basis)
 - Deterministic


T. Caneva, T. Calarco, and S. Montangero. Phys. Rev. A, 84(2):022326, 2004 P. Doria, T. Calarco, and S. Montangero. Phys. Rev. Lett., 106:190501 (2011)

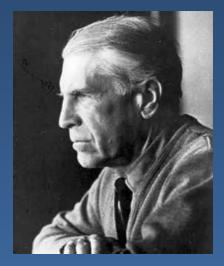
Doria, Calarco and Montangero - PRL 106 190501 (2011)

Gradients allow faster search

QOC Algorithms - Direct Direct methods - No gradient information

- Deterministic CRAB:
 - Simplex search (e.g. Nelder-Mead)
 - Arbitrary analytic controls (normally Fourier basis)
 - Deterministic

T. Caneva, T. Calarco, and S. Montangero. Phys. Rev. A, 84(2):022326, 2004 P. Doria, T. Calarco, and S. Montangero. Phys. Rev. Lett., 106:190501 (2011)


Stochastic

- CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
- NES (Natural Evolution Strategy)
- Genetic algorithms, Particle swarms

QOC Algorithms - Variational

Variational methods- Gradient based

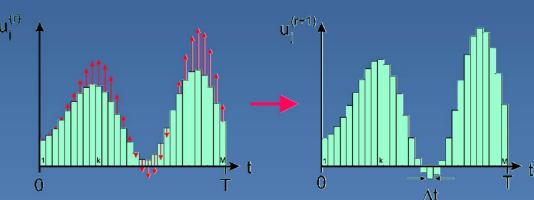
- Pro
 - Fast
 - Can handle large parameter spaces
 - Optional: Monotonic convergence

- Con
 - Requires gradient of goal w.r.t. control params
 - Usually based on the Pontryagin Max. Principle (PMP)
 - Non-trivial mathematically
 - Requires backwards-in-time propagation of an adjoint state

L. S. Pontryagin, V. G. Bol'tanskii, R. S. Gamkre-lidze, and E. F. Mischenko. The Mathematical Theory of Optimal Processes. Pergamon Press, New York (1964)

Pontryagin Max. Principle (PMP)

Goal	$J = \left \langle \psi \left(T \right) \psi_{\text{goal}} \rangle \right $	
Enforce	$\left(i\hbar\frac{\partial}{\partial t}-H\left(c\left(t\right)\right)\right) \psi\left(t\right)\rangle=0$	
Lagrange Multiplier	$\left\langle \chi\left(t\right)\left i\hbar\frac{\partial}{\partial t}-H\left(c\left(t\right)\right)\left \psi\left(t\right)\right ight angle$	
Functional	$\tilde{J} = J + \int_{0}^{T} \left\langle \chi(t) \right i\hbar \frac{\partial}{\partial t} - H(c(t)) \left \psi(t) \right\rangle$	
E.o.M for \ \\$ (t)	orward in time, starting from	$ \psi\left(0 ight) angle= \psi_{\mathrm{init}} angle$


 $|\chi(T)\rangle = |\psi_{\text{goal}}\rangle$

E.o.M for $\chi(t)$ ackward in time, starting from

E

QOC Algorithms - GRAPE Variational methods- Gradient based

- GRAPE
 - PWC parametrization of control fields
 - Fast gradient-based optimization (L-BFGS)
 - Arbitrary ansatz, constraints, filters: non-trivial

N. Khaneja, et al., J. Magn. Reson., 172(2) 296 (2005) P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov, J. Magn. Reson., 212(2) 412 (2011) S. Machnes, et. al.. PRA, 84 022305 (2011)

QOC Algorithms - Krotov Variational methods- Gradient based

- Krotov
 - Based on PMP (i.e. required backwards propagation)
 - Mathematically non-trivial
 - Flexible both PWC and analytic ansatz
 - Monotonic convergence

V. F. Krotov, Global Methods in Optimal Control Theory. Dekker, New York, 1996
D. M. Reich, M. Ndong, and C. P. Koch, JCP 136, 104103 (2012)
R. Eitan, M. Mundt, and D. J. Tannor, Phys. Rev. A, 83(5):053426, 2011

New QOC Algorithm: GOAT

- Gradient based (fast)
- Extremely flexible
 - Any ansatz
 - Any set of constraints
 - Filters (e.g. lowpass)
 - Multi-goal
 - more

- Not based on the PMP no backpropagation
- SIMPLE

Typical optimal control setup $g(\bar{\alpha}) = 1 - \frac{1}{\dim(U)} \left| U_{goal}^{\dagger} U(\bar{\alpha}, T) \right|$ $U(\bar{\boldsymbol{\alpha}},T) = \mathbb{T}\exp\left(\int_0^T -\frac{i}{\hbar}H(\bar{\boldsymbol{\alpha}},t)\,dt\right)$ $\overline{H(\mathbf{a},t)} = H_0 + \sum_{k=1}^{K} c_k(\mathbf{a},t) H_k$ $c_k(\bar{\alpha}, t) = \sum_{i=1}^{m} A_{k,m} \exp\left(-(t - \tau_{k,m})^2 / \sigma_{k,m}^2\right)$ $\bar{\alpha} = \{A_{k,m}, \tau_{k,m}, \sigma_{k,m}\}_{k=1,..,K, i=1,..,m}$ Find $\partial_{\bar{a}}g$ (\bar{a}) and follow the gradient.

Deriving GOAT (very simple)

$$g(\bar{\alpha}) = 1 - \frac{1}{\dim(U)} \left| U_{goal}^{\dagger} U(\bar{\alpha}, T) \right|$$

$$\partial_{\bar{\alpha}}g\left(\bar{\alpha}\right) = -real\left(\frac{g^{*}}{|g|}\frac{1}{dim(U)}Tr\left(U_{goal}^{\dagger}\partial_{\bar{\alpha}}U\left(\bar{\alpha},t\right)\right)\right)$$
$$g = Tr\left(U_{goal}^{\dagger}U\left(\bar{\alpha},t\right)\right)$$

SUM

 $\partial_{\bar{\alpha}}U(\bar{\alpha},t) = ?$

 $\partial_{\bar{\alpha}} U(\bar{\alpha}, t)$ via modified Schrödinger

 $\partial_t U = -\frac{i}{\hbar} H U$

 $\partial_{\bar{a}}\partial_t U = -\frac{i}{\hbar} \left((\partial_{\bar{a}} H) U + H \partial_{\bar{a}} U \right)$

$\partial_{\bar{\alpha}} U(\bar{\alpha}, t)$ via modified Schrödinger

 $\partial_t U = -\frac{i}{\hbar} H U$

 $\partial_t \partial_{\bar{\alpha}} U = -\frac{i}{\hbar} \left((\partial_{\bar{\alpha}} H) U + H \partial_{\bar{\alpha}} U \right)$

 $\left(\begin{array}{c} U \\ \partial_t \begin{pmatrix} U \\ \partial_{\bar{\alpha}} U \end{pmatrix} \right) = -\frac{i}{\hbar} \begin{pmatrix} H & 0 \\ \partial_{\bar{\alpha}} H & H \end{pmatrix} \begin{pmatrix} U \\ \partial_{\bar{\alpha}} U \end{pmatrix}$

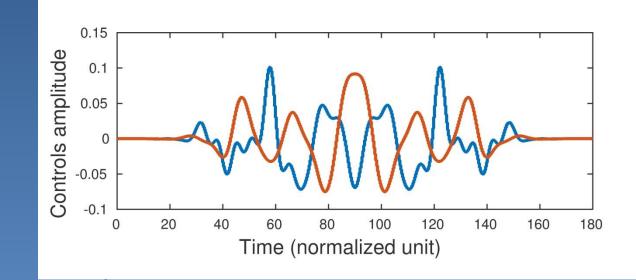
This is the GOAT core idea

Deriving GOAT (very simple)

$$\partial_t \begin{pmatrix} U \\ \partial_{\bar{\alpha}} U \end{pmatrix} = -\frac{i}{\hbar} \begin{pmatrix} H & 0 \\ \partial_{\bar{\alpha}} H & H \end{pmatrix} \begin{pmatrix} U \\ \partial_{\bar{\alpha}} U \end{pmatrix}$$

 $H(\bar{\boldsymbol{\alpha}},t) = H_0 + \sum_{k=1}^{K} c_k(\bar{\boldsymbol{\alpha}},t) H_k$

 $\partial_{\bar{\alpha}} H(\bar{\alpha},t) = \overline{\sum_{k=1}^{K} \partial_{\bar{\alpha}} c_k(\bar{\alpha},t) H_k}$



Constraints?

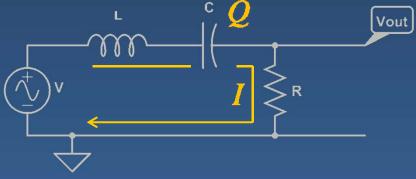
 $c_{k}\left(t\right) = A e^{-\frac{\left(t-\tau\right)^{2}}{\sigma^{2}}}$

Smooth start / finish $c_k(\bar{\alpha}, t) \longrightarrow w(t) c_k(\bar{\alpha}, t)$

Local phase freedom

Task: Optimize a gate, ignoring either phases (global phase and local -s pq, for multi-spin gates, ignoring all local operations.

Example: Generate rotation up to a phase.

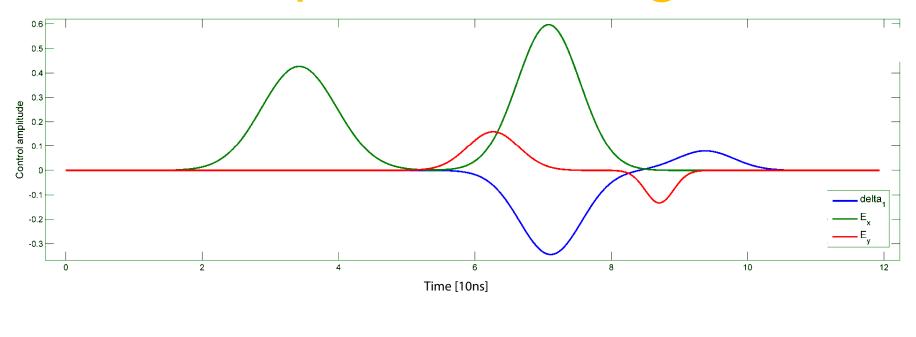

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} g = 1 - \left(|u_{01}|^2 + |u_{10}|^2 \right) / 2$$

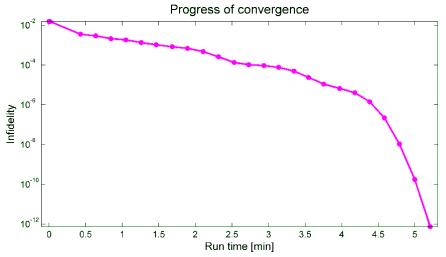
General solution

Add the local operations explicitly to the parameter space

 $U_{\text{total}} \left(\theta_{1}, \theta_{2}, \bar{\alpha}, \theta_{3}, \theta_{4}, T\right) = e^{i\theta_{4}\sigma_{z_{b}}} e^{i\theta_{3}\sigma_{z_{a}}} U\left(\bar{\alpha}, T\right) e^{i\theta_{2}\sigma_{z_{b}}} e^{i\theta_{1}\sigma_{z_{a}}}$ $g\left(\theta_{1}, \theta_{2}, \bar{\alpha}, \theta_{3}, \theta_{4}\right) = 1 - \frac{1}{\dim(U)} \left| U_{goal}^{\dagger} U_{\text{total}} \left(\ldots\right) \right|$

Transfer functions




 $\begin{array}{l}
\partial_t Q = I \\
\partial_t I = V_{in} - \frac{1}{LC}Q - RI \\
\longrightarrow \\
\partial_t U = -\frac{i}{\hbar}HU
\end{array}$

 $\begin{aligned} \partial_t \partial_{\bar{\alpha}} Q &= \partial_{\bar{\alpha}} I \\ \partial_t \partial_{\bar{\alpha}} I &= \partial_{\bar{\alpha}} V_{in} - \frac{1}{LC} \partial_{\bar{\alpha}} Q - R \partial_{\bar{\alpha}} I \\ \partial_t \partial_{\bar{\alpha}} U &= -\frac{i}{\hbar} \left((\partial_{\bar{\alpha}} H) U + H \partial_{\bar{\alpha}} U \right) \end{aligned}$

Example: Transmon gates

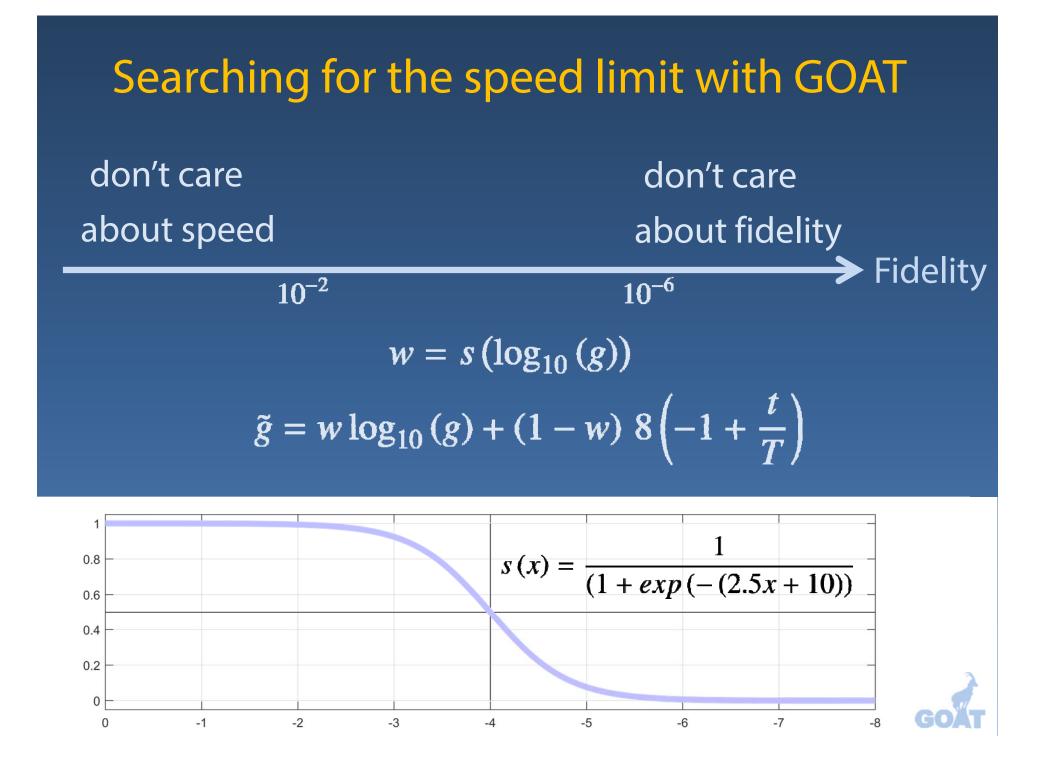
Searching for the shortest pulse

- Start with long pulse duration, random pulse.
- Optimize pulse until goal fidelity is reached.
- Shorten time repeatedly and re-optimize, until failure rate reaches 100%.
 - Each time start optimization with a random pulse.

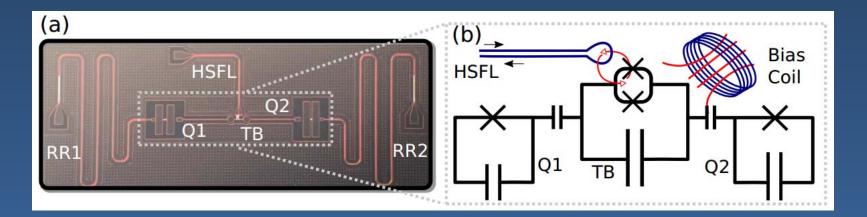
Ð

 Use pulse optimized for longer time as starting point ("telescoping").

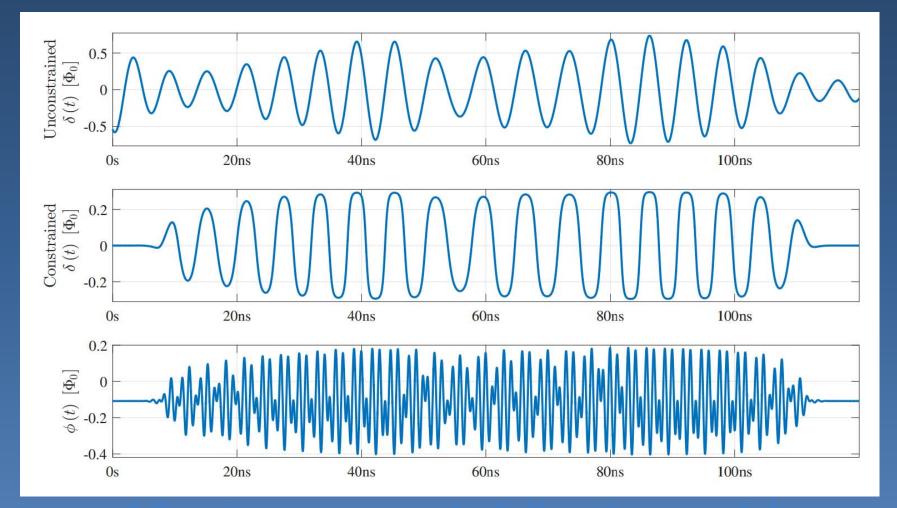
Searching for the shortest pulse


- We wish to optimize both fidelity and speed.
- Standard multi-objective approach:

$$g(\bar{\alpha}) = r g_1(\bar{\alpha}) + (1-r) g_2(\bar{\alpha})$$


and Pareto front.

Speed interfering at high infidelity.
 Infidelity interfering after it is "good enough"


IBM's Flux Tunable Coupler

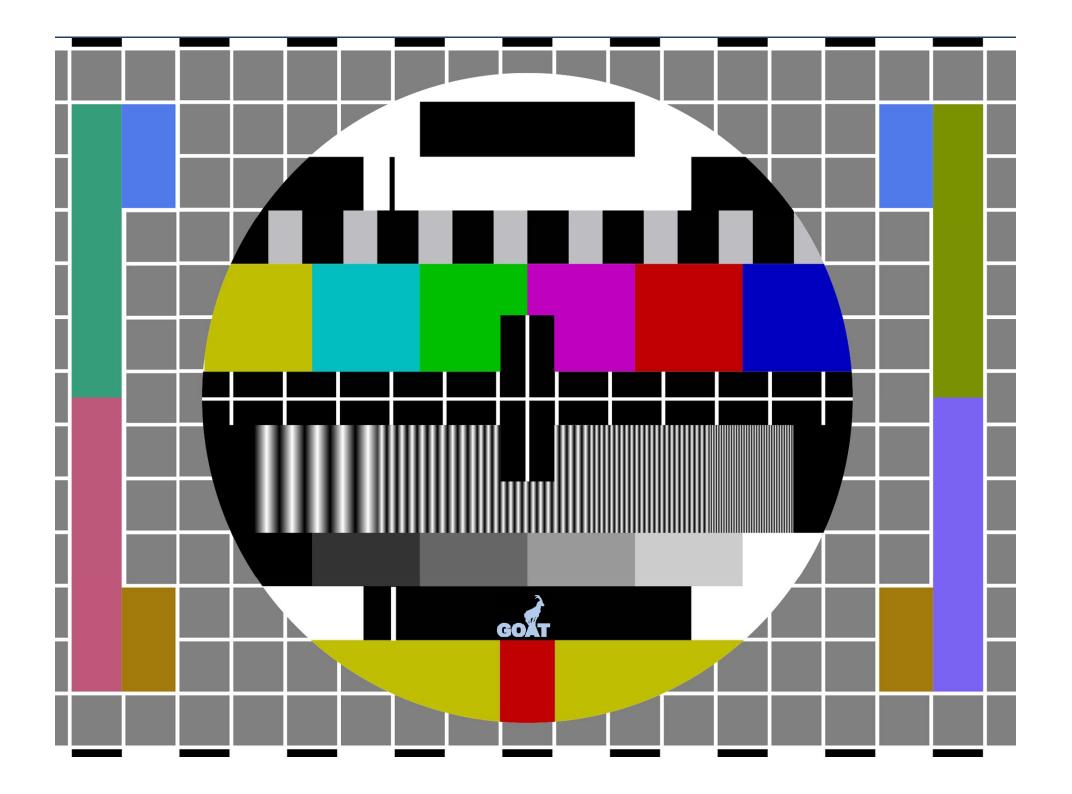
D. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. Chow, and J. Gambetta, arXiv 1604.0307 (2016)

 $H = \sum_{k} \omega_{k} a^{\dagger} a - \alpha |2\rangle \langle 2|_{k} + \omega_{TB}(\Phi) b^{\dagger} b + g_{k}(a_{k}^{\dagger} b + b^{\dagger} a_{k})$ $\omega_{TB}(\Phi) = \omega_{TB,0} \sqrt{|\cos(\pi \Phi/\Phi_{0})|}$ $\Phi = \Theta + \delta(t) \cos(\omega_{\Phi} t)$

Flux Tunable Coupler

10⁻¹² infidelity

Summary


- Quantum optimal control is a critical technology for high-accuracy driving of quantum systems.
- Research in the field of QOC is on-going. Challenges include traps, open systems (esp. non- Markovian), optimal closed-loop, measurements, much much more.
- GOAT is a novel, highly flexible, conceptually simple and easy-to-implement gradient-based optimal control algorithm.

Thank you !

S. J. Glaser, et al., The European Physical Journal D 69.12 (2015): 1-24

C. P. Koch, Journal of Physics: Condensed Matter 28.21 (2016): 213001

