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XOR Games
• XOR game: correlation Bell ineq. 2 parties, m settings, 2 outcomes.

• CHSH: f(s,t) = s.t for s, t ∈ {0,1}. 

Classical Value
Deterministic assignments (a = h(s), b = g(t))

Quantum value 
Measurements on quantum states

∑
s∈S
t∈T

P(s, t) ∑
a,b∈{0,1}

P(a ⊕ b = f (s, t)|s, t) ≤ ωc(G) ≤ ωq(G)

<As Bt> = P(a ⊕ b = 0|s,t) - P(a ⊕ b = 1|s,t)

s t

a ∈ {0,1} b ∈ {0,1}

Goal: 
a⊕b mod 2= f(s,t)

R. Cleve, P. Hoyer, B. Toner and J. Watrous, arXiv: 0404076 (2004).

B. S. Tsirelson, Lett. in Math. Phys. 4(2), 93 (1980).



XOR games

• XOR games: CHSH, Chain inequality, non-local computation game, GHZ-
Mermin, Svetlichny ineq.

• Useful for: 

• Randomness Amplification (Chain Inequality, GHZ-Mermin game) 

• Quantum key distribution against no-signaling adversaries (Chain Inequality), 
against quantum adversaries (CHSH)

• Randomness Expansion (CHSH, GHZ and other “self-testing” XOR games)

• Efficient computation of ωq(G) for 2-party XOR games: semidefinite 
program from Tsirelson’s theorem

R. Colbeck and R. Renner, Nature Physics 8, 450 (2012).
J. Barrett, L. Hardy and A. Kent, Phys. Rev. Lett. 95, 010503 (2005). 
U. Vazirani and T. Vidick, Phys. Rev. Lett. 113, 140501 (2014).

C. A. Miller and Y. Shi, arXiv: 1411.6608 (2014).



Linear game: XOR game with d outcomes

• Generalization of XOR games: “Linear games” with d outcomes.

• XOR-d games : Linear games with G = Zd, ⊕d : addition modulo d. 

ω(g) = ∑
u∈QA
v∈QB

∑
a,b∈G

q(u, v)P(a + b = f (u, v)|u, v).

Definition 1. A two-player linear game (gl , q) is one where
two players Alice and Bob receive questions u, v from sets
QA and QB respectively, chosen from a probability distribu-
tion q(u, v) by a referee. They reply with respective answers
a, b ∈ (G,+) where G is a finite Abelian group with asso-
ciated operation +. The game is defined by a winning con-
straint a+ b = f (u, v) for some function f : QA ×QB → G.

J. Hastad, J. ACM, 48 (4): 798 (2001).
J. Kempe, O. Regev and B. Toner, arXiv:0710.0655 (2007)

u v

a ∈ G b ∈ G

Goal: 
a + b mod d= f(u,v)

⊕d : XOR-dAlice Bob



Quantum value ωq(G)of Linear games
• We propose an efficiently computable (norm-based) bound on ωq(G) of linear 

games using Fourier transforms on finite abelian groups. 

•

Theorem 2. The quantum value of a linear game gl with
input sets QA, QB can be bounded as

ωq(gl) ≤ 1
|G|

⎡
⎣1 +

√
|QA||QB| ∑

x∈G\{e}
‖Φx‖

⎤
⎦ , (3)

where Φx = ∑(u,v)∈QA×QB
q(u, v)χx( f (u, v))|u〉〈v| are the

game matrices, χx are the characters of the group G and ‖ · ‖
denotes the spectral norm. In particular, for an XOR-d game
with mA and mB inputs for the two parties, the quantum
value can be bounded as

ωq(g⊕) ≤ 1
d

[
1 +

√
mAmB

d−1

∑
k=1

‖Φk‖
]

, (4)

with Φk = ∑u∈[mA]
v∈[mB]

q(u, v)ζk f (u,v)|u〉〈v| and ζ =

exp (2πI/d).

Theorem 2. The quantum value of a linear game gllllllllgg with
input sets QA, QB can be bounded as

ωq(glgg ) ≤ 1
|G|

⎡
⎣
⎡⎡

1 +
√√
|QA||QB| ∑

x∈G\{e}
‖Φx‖

⎤
⎦
⎤⎤

, (3)

where Φx = ∑(u,v)∈QA×QB
q(u, v)χx( f (u, v))|u〉〈v| are the

game matrices, χx are the characters of the group G and ‖ · ‖
denotes the spectral norm. In particular, for an XOR-d game
with mA and mB inputs for the two parties, the quantum
value can be bounded as

ωq(g⊕g ) ≤ 1
d

[
1 +

√√
mAmB

d−1

∑
k=1

‖Φk‖
]

, (4)

with Φk = ∑u∈[mA]
v∈[mB]

q(u, v)ζk f (u,v)|u〉〈v| and ζ =

exp (2πI/d).

R. R, R. Augusiak and G. Murta, arXiv: 1502.02974 (2015). 
J. I. de Vicente, Phys. Rev. A 92, 032103 (2015).



XOR-d

• Exists an optimal quantum strategy with fully random, correlated outputs. 
P(a|u) = P(b|v) = 1/d

• a           a ⊕d r, 

• b           b ⊖d r

• For wq              1 (e.g. chained BI with d=2) , perfectly correlated outputs

wc = 1 - 1/(2N), wQ = 1 - sin2(π/4N), wns = 1.  

r: shared random dit
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S. L. Braunstein and C. M. Caves, Annals of Physics 202, 22 (1990).



Questions

• Approx. asymptotic quantum and classical values of BIs. 

• Identify BIs with unbounded violations. Open: 3 party, d outcome. 

• Identify BIs that obey perfect parallel repetition for their quantum value.

• Are there finite BI with algebraic quantum violation, with random, correlated 
outputs for all no-signaling strategies?

• Can we identify BIs with no quantum advantage? Tightness. 

• ...



Background

• Buhrman & Massar. Introduced the CHSH-3 game a + b mod 3 = u.v mod 3. 

• Liang et al. and Ji et al.. Numerically computed classical and quantum value up to d 
= 13 for CHSH-d. Upper bound from SDP hierarchy, lower bound 

• Kempe, Regev and Toner. Showed quantum version of UGC false! For linear game 
with value 1 - ε, round an SDP to give quantum strategy that achieves ≥ 1 - 4 ε.  

• Bavarian and Shor: Asymptotic value of CHSH-d. Quantum bias: Ω(d-1/2). Classical 
bias: Ω(d-1/2) for d = p2k (prime p, integer k) and O(d-1 2-δ) for d = p2k-1

wq(CHSH-3) ≤ 1/3 + 2 /(3 √ 3)

Y. C. Liang, C.-W. Lim and D.-L. Deng, Phys. Rev. A 80, 052116 (2009). 
H. Buhrman and S. Massar, Phys. Rev. A 72 (5), 052103 (2005).

J. Kempe, O. Regev and B. Toner, arXiv:0710.0655 (2007)

M. Bavarian and P. Shor, arXiv: 1311.5186 (2013).



CHSH-d

• CHSH-d game: Generalization of CHSH to d > 2 outputs. 

• Alice and Bob are asked questions (u,v) from a finite field Fd of size d with 
input distribution q(u,v) = 1/d2, where d is a prime or prime power. 

• They return answers a, b ∈ Fd  to satisfy a ⊕ b = x . y, the arithmetic 

operations taken from the field Fd. 

• Open question: Asymptotic separation between quantum and classical values for d = p2k-1

for prime p, integer k? Related to security of Bourgain’s two-source extractor in the 
presence of quantum memory.

M. Bavarian and P. Shor, arXiv: 1311.5186 (2013).

Problem 1.5 (Open). Does there exists an infinite family of d = p2k-1 such that ωq(CHSH-d) = Ω(d-1/2), or 
some δ > 0 and an infinite family of d = p2k-1 such that ωq(CHSH-d) = O(d-1 2-δ) ?



CHSH-d

1 1 1

1 ζ ζ2

1 ζ2 ζ

Game Cost Matrix

ζ = exp(2i �/3)

u
vAlice’s 

settings

Bob’s 
settings

Φ1  =

a⊕ b mod 3= u.v mod 3

0
1
2

0    1   2

• Recovers the quantum bound on CHSH-d obtained by Bavarian and Shor (arXiv: 
1311.5186) using a different method.

M. Bavarian and P. Shor, arXiv: 1311.5186 (2013).

Example [see also [20]] The quantum value of the CHSH-d
game for prime and prime power d, i.e., d = pr where p is
prime and r ≥ 1 is an integer, can be bounded as

ωq(CHSH − d) ≤ 1
d
+

d − 1

d
√

d
. (5)

Examplle [[see allso [[2200]]]] Thhe quantum vallue off thhe CHSH-dd
game for prime and prime power d, i.e., d = pr where p is
prime and r ≥ 1 is an integer, can be bounded as

ωq(CHSH − d) ≤ 1
d
+

d − 1

d
√

d
. (5)



Pseudo-telepathy

• Which functions have a quantum but not classical winning strategy, i.e., ωc(G) < 
ωq(G) = ωns(G) = 1?

• Any no-signaling box that wins a non-trivial xor-d game trivializes communication 
complexity. In particular, boxes P(a,b|u,v) = 1/|G| for a+b = f(u,v) and 0 otherwise. 

• Extended to partial functions in Gnacinski et al. (arXiv: 1511.05415). Chained Bell 
inequalities are the best one can do. 

Lemma 4. For XOR-d games g⊕ corresponding to total func-
tions with m questions per player, when the input distribution
is uniform q(u, v) = 1/m2, ωq(g⊕) = 1 iff ωc(g⊕) = 1,
i.e., when rank(Φ1) = 1.

Lemma 4. For XOR-ddd games g⊕⊕⊕⊕⊕⊕⊕⊕⊕g correspondddiing to totalll fffunc-
tions with m questions per player, when the input distribution
is uniform q(u, v) = 1/m2, ωq(g⊕g ) = 1 iff ωc(g⊕g ) = 1,
i.e., when rank((((Φ1)))) = 1.

R. R, J. Tuziemski, M. Horodecki and P. Horodecki, arXiv: 1410.0947 (2014).
G. Wang, arXiv: 1109.4988 (2011). W. van Dam, arXiv: 0501159 (2005).

P. Gnacinski, M. Rosicka, R. R., K. Horodecki, M. Horodecki, P. Horodecki, S. Severini, arXiv: 1511.05415 (2015).



When does ωc(G) = ωq(G)?

• Which functions have no quantum advantage over classical, i.e., ωc(G) = ωq(G) < 
ωns(G) = 1?

• No quantum advantage in general Non-Local Computation: functions f(z1,...,zn) from n 
dits to 1 dit. 

• Alice and Bob are given inputs xi and yi obeying xi ⊕d yi = zi for i ∈ [n] with 
each p(xi) = p(yi ) = 1/d. 

• Goal: Output a, b ∈ {0,...,d-1} such that a ⊕d b = f(x1⊕d y1,..., xn ⊕d yn).  

• Here we restrict to f(x1 ⊕d y1, ..., xn-1 ⊕d yn-1) . (xn ⊕d yn).

• Max. success prob. for any p(z1, ..., zn) = (1/dn+1) p(x1⊕dy1, ..., xn-1⊕d yn-1).

N. Linden, S. Popescu, A. J. Short and A. Winter, Phys. Rev. Lett. 99, 180502 (2007).



Non-Local Computation

• Non-Local Computation of functions NLCd : 

• a ⊕d b = f(x1 ⊕d y1, ..., xn-1 ⊕d yn-1) . (xn ⊕d yn)

• Input distribution:

• Proof Idea: Game matrices are diagonal in a basis composed of tensor products 
of Fourier vectors, we present a classical strategy which achieves this value.

• Open: Classify tasks with no quantum advantage beyond NLC.  

Theorem 5. The games NLCd for arbitrary prime d and for
input distribution satisfying (8) have no quantum advantage,
i.e., ωc(NLCd) = ωq(NLCd).

Theorem 5. The games NLCd for arbitrary prime d and for
input distribution satisfying (8) have no quantum advantage,
i.e., ωc(NLCd) = ωq(NLCd).

1
dn+1 p(xn−1 ⊕d yn−1) (8)

R. R, R. Augusiak and G. Murta, arXiv: 1502.02974 (2015). 



Device-independent witness of genuine 
multipartite entanglement

• Biseparable state of three parties

• Use the bound to detect genuine tripartite entanglement in qudit systems.

• Max. success prob. in a tripartite symmetric linear game using a biseparable 
state (Charlie has a deterministic strategy)

• Example:  For the game                                              , we get 

• Qutrit GHZ state wins the game with prob. 1

ρB = p1ρA ⊗ ρBC + p2ρB ⊗ ρAC + p3ρC ⊗ ρAB,

ωC
B(g�3) ≤ max

{cz}
1
|G|

⎛
⎝1 +

√
Q1Q2 ∑

k∈G\{e}
||ΦB

k (cz)||
⎞
⎠ ,

(23

ΦB
k (cz) = ∑

x,y

(
∑
z

p(x, y, z)χk( f (x, y, z)− cz)

)
|x〉〈y| .

a ⊕3 b ⊕3 c = x · y · z s.t. x ⊕3 y ⊕3 z = 0 ωB ≤ 0.896

|GHZ3〉 = |000〉+ |111〉+ |222〉√
3

G. Murta, R. R., N. Moller and M. T. Cunha, arXiv: 1510.09210 (2015).

J.-D. Bancal, N. Gisin, Y.-C. Liang, S. Pironio, Phys. Rev. Lett. 106, 250404 (2011).



Facets with no quantum advantage

• Significant to find a non-trivial boundary of the quantum set, information-
theoretic principles such as the Local Orthogonality principle. 

• We study whether xor games without quantum advantage are facets of the 
classical polytope, find a negative answer for a restricted class of functions. 

• Proof is by decomposition to multiple face-defining inequalities so that they 
cannot define facets. 

LHV polytope

NS polytope

Quantum facet

M. L. Almeida, J.-D. Bancal, N. Brunner, A. Acin, N. Gisin and S. Pironio, Phys. Rev. Lett. 104, 230404 (2010)

Theorem 6. The non-local computation game inequalities for
functions of the form in Eq. (7) for d = 2 do not define facets
of the local polytope for any input size 2n.

LHVHVLHVLHV p

Theorem 6. The non-local computation game inequalities for
functions of the form in Eq. (7) for d7 = 2 do not define facets
of the local polytope for any input size 2n.

R. Augusiak, T. Fritz, Ma. Kotowski, Mi. Kotowski, M. Pawlowski, M. Lewenstein and A. Acin, Phys. Rev. A 85, 
042113 (2012).



Open Questions
• Identify functions when the proposed quantum bound is tight?

• Bounds on classical value? Incidence combinatorics, operator space?

• Optimal witnesses of genuine qudit multipartite entanglement.  

• Perfect Parallel repetition of linear games, additivity?

• DI Protocols using linear games? E.g.: Relativistic bit commitment. 

Thank you!

This work is supported by: ERC grant QOLAPS and the FNP TEAM project. 



Shannon zero-error capacity

• Relation between the quantum value of a game and the Shannon zero-error capacity of a channel.

• Shannon zero-error capacity: For sequential uses of a memoryless channel, maximum rate at which 
information can be sent through the channel with zero probability of error. 

• Capacity is computed through the confusability graph of the channel: 

• Vertices correspond to letters of the encoding alphabet

• Edges connect two vertices if the corresponding inputs can be confused by the receiver

• Maximum number of 1-letter messages that can be sent is the independence number α(G). Denote by 
α(Gk) the maximum number of k-letter messages that can be sent (two k-letter words are confusable if 
every letter in the two words is confusable).

• Shannon capacity of a graph Θ(G) is notoriously difficult to compute. Breakthrough result by Lovasz for 
the pentagon graph using the SDP relaxation known as Lovasz theta ϑ(G) number. Θ(G) ≤ ϑ(G).  

Θ(G) = sup
k

k

√
α(Gk).

C. E. Shannon, IRE Trans. Inform. Th. 2, 8-19 (1956)
L. Lovasz, IEEE Trans. on Inform. Th. IT-25(1) (1979)

phys.org



Shannon zero-error capacity and 
quantum value of games

• Relation between the quantum value of a game and the Shannon zero-error capacity of a channel.

• Let us consider the xor game matrix:

• Associate to every game an “orthogonality graph”:

• The classical and quantum values of any game can be bounded in terms of the graph parameters 

m2ωc = α(G),

α(G) ≤ m2ωq ≤ θ(G)

Definition 1. The graph G associated with the XOR game
matrix Φ consists of 2m2 vertices v ∈ V . Each label v can be
expressed as (x, y, a) where x, y ∈ [m] and a ∈ {0, 1}. Two
vertices v, v′ ∈ V form an edge of the graph if (x = x′ and
a �= a′) or (y = y′ and (−1)a⊕a′ �= ΦxyΦx′y).

A. Cabello, S. Severini and A. Winter, arXiv: 1010.2163 (2010).
A. Chailloux, L. Mancinska, G. Scarpa and S. Severini, arXiv: 1404.3640 (2014).

Φ̃ =
∑

x,y∈[m]

(−1)f(x,y)P (x, y)|x〉〈y|.
1 1

1 -1
CHSH



Games with no quantum advantage

• Information-theoretic principles designed to capture the set of quantum non-local correlations: Local 
Orthogonality, Information Causality, Macroscopic Locality, No advantage in Non-Local Computation, 
Trivialization of Communication Complexity. 

• Formulation of LO and NLC based on finding games with no quantum advantage.

• No advantage in Non-Local Computation of a boolean function from n bits to 1 bit f(z1, ..., zn). 

• Alice and Bob are given inputs xi and yi obeying xi ⊕ yi = zi for i = 1,..., n, with each p(xi = 0) = p(yi 

=0) = 1/2. 

• Goal: Output a and b such that a ⊕ b = f(x1 ⊕ y1, ..., xn ⊕ yn).

• Maximize probability of success for any p(z1, ..., zn) = p(x1 ⊕ y1, ..., xn ⊕ yn).

• Quantum theory provides no advantage in the distributed non-local computation of boolean functions. Optimal 
is simply a linear approximation of the function.  

• Can we characterize the games with no quantum advantage?

N. Linden, S. Popescu, A. J. Short and A. Winter, Phys. Rev. Lett. 99, 180502 (2007).



xor games with no advantage
• Phrase the SDP in terms of the bias of the game (εq = 2 ωq - 1) 

• We give a necessary and sufficient condition for the lack of quantum advantage in an xor game

εq = max Tr[Φ̃s X]
s.t. diag(X) = |j〉, X � 0,

q g y

Φ̃s =
(

0 1

2
Φ̃

1

2
Φ̃T 0

)

X =
(

A S
ST B

) Sx,y = 〈ux|vy〉
〉 d 〈
〈 | y〉

Bx,y = 〈vx|vy〉
l i h

Ax,y = 〈ux|uy〉

Theorem 1. Consider a two-party XOR game with game
matrix Φ̃ with no all-zero row or column for which
Sc = |sA〉〈sB| represents the optimal classical strat-
egy. Let Σ = diag({〈i|Φ̃|sB〉〈sA|i〉}mi=1) and Λ =
diag({〈sA|Φ̃|i〉〈i|sB〉}mi=1). There is no quantum advantage
for Φ̃ if and only if Σ,Λ � 0, or Σ,Λ ≺ 0, and

ρ(Λ−1Φ̃TΣ−1Φ̃) = 1, (3)

where ρ(.) denotes the spectral radius.

Theorem 1. Consider a two-party XOR game with game
matrix Φ̃ with no all-zero row or column for which
Sc = |sA〉〈sB| represents the optimal classical strat-
egy. Let Σ = diag({〈i|Φ̃|sB〉〈sA|i〉}mi=1) and Λ =
diag({〈sA|Φ̃|i〉〈i|sB〉}mi=1). There is no quantum advantage
for ˜

gg
Φ if and only if Σ,Λ � 0, or Σ,Λ ≺ 0, and

ρ(Λ−1Φ̃TΣ−1Φ̃) = 1, (3)

where ρ(.) denotes the spectral radius.

Φ̃ =
∑

x,y∈[m]

(−1)f(x,y)P (x, y)|x〉〈y|.



New class of channels for which Shannon 
capacity can be computed

• We derive a simpler sufficient condition to obtain games with no quantum advantage

• We use the Theorem to derive new class of communication channels (graphs) for which the Shannon 
zero-error capacity can be computed.

Corollary 2. If the vectors corresponding to the maximum
singular value of Φ̃ only contain elements that are ±1, then
there is no quantum advantage for players of the game Φ̃.

Corollary 2. If the vectors corresponding to the maximum
singular value of Φ̃ only contain elements that are ±1, then
there is no quantum advantage for players of the game Φ̃.

Theorem 3. Every two-party XOR game with m uniformly
chosen inputs for each party, and satisfying Cor. 2 has a game
graph which is class-1 (has Θ(G) = α(G)).

TTTTThhhhhhheorem 3333. EEEEEvery tttwo-parttty XOR game wiiiiiittthhhhhhhh m uniiiiiifffffffformlllllllly
chosen inputs for each party, and satisfying Cor. 2 has a game
ggrapph which is class-1 (has Θ(G) = α(G)).



New class of channels for which Shannon 
capacity can be computed

• We study the properties of these channels in terms of the graphs: 

• The graphs are (2m-1) regular, triangle-free, and have a perfect matching. 

• Their spectrum and corresponding degeneracies are found to be

• We show that this family of graphs is distinct from previously known families: Konig-Egervary graphs, 
Kneser graphs and the simple perfect graphs. 

spec(A(G)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2m− 1 1
m− 1 2m− 2
−1 (m− 1)2

1−m± λz 1
1 m(m− 2)

R. R, A. Kay, G. Murta and P. Horodecki, Phys. Rev. Lett. 113, 240401 (2014).  



Motivation

• Hard to compute classical, quantum values of BIs. UGC: Unique game (classical 
value) is inapproximable, gap-preserving reductions give inapproximability for NP-
complete problems. Efficient bounds?

• Operator space: Large ratio of quantum bias to classical bias for non-local games. 
Three party, d-outcome Bell inequalities with exponential separation? 

• Device-independent applications: Crypto, randomness, entanglement witness.

• Beyond XOR games, implications for information-theoretic principles. 

S. Khot and N. Vishnoi, Proc. of 46th IEEE FOCS, 53 (2005).
S. Khot, Proc. of 34th ACM STOC, 767 (2002).

J. Hastad, J. of ACM 48 (4), 798 (2001).



Quantum Value ωq(G)

• Efficient computation of ωq(G) for XOR games: Semidefinite program from
Tsirelson’s theorem  

• XOR games are the only known class of games whose quantum value can be 
computed so efficiently

R. Cleve, P. Hoyer, B. Toner and J. Watrous, arXiv: 0404076 (2004).

B. S. Tsirelson, Lett. in Math. Phys. 4(2), 93 (1980).

Proposition 5. Let G(V, π) be an XOR game and let m = min(|S|, |T|). Then

ωq(G)− τ(G) =
1
2

max
{|us〉},{|vt〉} ∑

s,t
π(s, t) (V(0 | s, t) − V(1 | s, t)) 〈us|vt〉 ,

where the maximum is over all choices of unit vectors {|us〉 : s ∈ S} ∪ {|vt〉 : t ∈ T} in Rm.

τ(G) =
1
2 ∑

c∈{0,1}
∑
s,t

π(s, t)V(c | s, t).

Semi-definite Program



Outline
• Motivation

• Linear games:

• d-outcome generalization of XOR games. 

• Bound on the quantum value.

• E.g. CHSH-d game. 

• Non-local computation.

• Device-independent multipartite entanglement witness.

• Pseudo-telepathy.

• Open Questions.

G. Murta, R. R., N. Moller and M. T. Cunha, arXiv: 1510.09210 (2015).
R. R, R. Augusiak and G. Murta, arXiv: 1502.02974 (2015). 

P. Gnacinski, M. Rosicka, R. R., K. Horodecki, M. Horodecki, P. Horodecki, S. Severini, arXiv: 1511.05415 (2015).


