A guided tour from locality to noncontexuality (and back again)

> Matthew Pusey Perimeter Institute

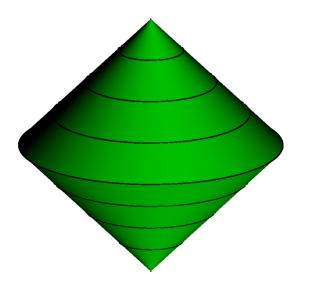
with Rob Spekkens

Entanglement witnesses

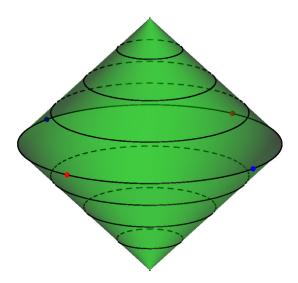
$\operatorname{tr}\left((X\otimes X)\rho\right) + \operatorname{tr}\left((Z\otimes Z)\rho\right) \leq 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trusted measurements



Trusted measurements



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

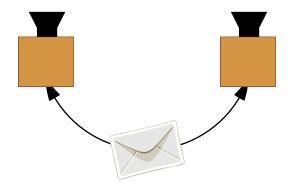
Untrusted measurements

・ロト・日本・モト・モート ヨー うへぐ

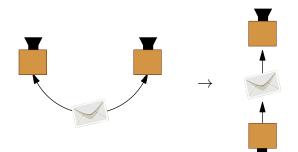
Classical correlations

Alice	Bob	Name
Trusted	Trusted	Separability
Trusted	Untrusted	Unsteerability
Untrusted	Untrusted	Bell locality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

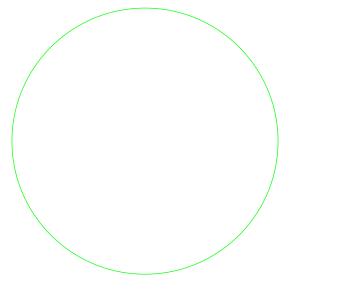


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

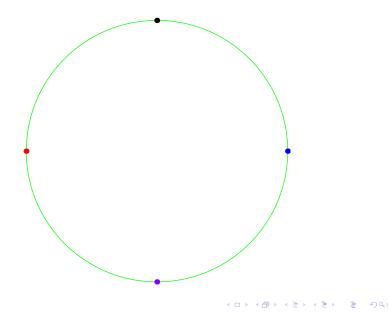


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Trusted preparation

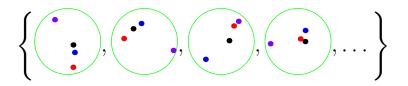


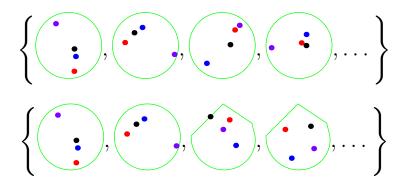
Trusted preparation



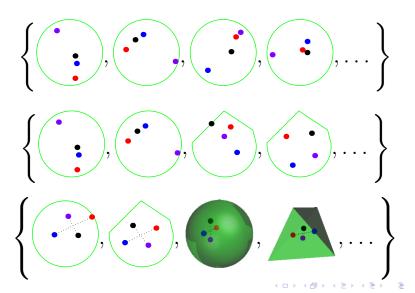
Input	Output	Name
Trusted	Trusted	Entanglement-breaking
Trusted	Untrusted	Jointly measurable ¹
Untrusted	Trusted	Anything!
Untrusted	Untrusted	Anything!

¹arXiv:1502.03010





▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへ⊙



 $\mathcal{O} \mathcal{O} \mathcal{O}$

Input	Output	Name
Trusted	Trusted	Entanglement-breaking
Trusted	Untrusted	Jointly measurable
Untrusted	Trusted	Anything!
Untrusted	Untrusted	Anything!

Input	Output	Name
G-trusted	G-trusted	G-entanglement-breaking
G-trusted	Untrusted	G-jointly-measurable
Untrusted	G-trusted	Anything!
Untrusted	Untrusted	Anything!

Input	Output	Name
G-trusted	G-trusted	Noncontextual
G-trusted	Untrusted	Preparation noncontextual
Untrusted	G-trusted	Anything! ²
Untrusted	Untrusted	Anything!

²Measurement noncontextual

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P})p(k|\lambda, \mathcal{M})d\lambda$$

³cf Busch quant-ph/9909073

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 = 釣�?

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P})p(k|\lambda, \mathcal{M})d\lambda$$

 $p(k|\lambda, \mathcal{M})$ are probabilities that respect coarse-graining and mixtures of \mathcal{M} .

³cf Busch quant-ph/9909073

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P}) p(k|\lambda, \mathcal{M}) d\lambda$$

 $p(k|\lambda, \mathcal{M})$ are probabilities that respect coarse-graining and mixtures of \mathcal{M} . A noncontextual $p(k|\lambda, \mathcal{M})$ only depends on the operational equivalence class of \mathcal{M} .

³cf Busch quant-ph/9909073

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P})p(k|\lambda, \mathcal{M})d\lambda$$

 $p(k|\lambda, \mathcal{M})$ are probabilities that respect coarse-graining and mixtures of \mathcal{M} . A noncontextual $p(k|\lambda, \mathcal{M})$ only depends on the operational equivalence class of \mathcal{M} . $\implies p(k|\lambda, \cdot)$ is a state for each λ .³

³cf Busch quant-ph/9909073

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P})p(k|\lambda, \mathcal{M})d\lambda$$

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P})p(k|\lambda, \mathcal{M})d\lambda$$

 $p(\lambda|\mathcal{P})$ are probabilities that respect mixtures of \mathcal{P} .

$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P}) p(k|\lambda, \mathcal{M}) d\lambda$$

 $p(\lambda|\mathcal{P})$ are probabilities that respect mixtures of \mathcal{P} .

A noncontextual $p(\lambda|\mathcal{P})$ only depends on the operational equivalence class of \mathcal{P} .

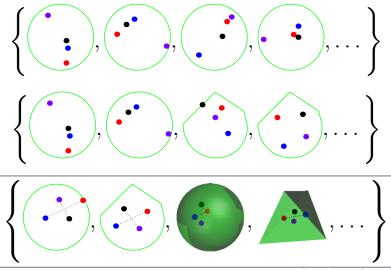
$$p(k|\mathcal{P}, \mathcal{M}) = \int p(\lambda|\mathcal{P}) p(k|\lambda, \mathcal{M}) d\lambda$$

 $p(\lambda|\mathcal{P})$ are probabilities that respect mixtures of \mathcal{P} .

A noncontextual $p(\lambda|\mathcal{P})$ only depends on the operational equivalence class of \mathcal{P} .

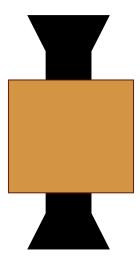
 $\implies p(\lambda|\cdot)$ is a measurement with outcome λ .

Traditional g-trust

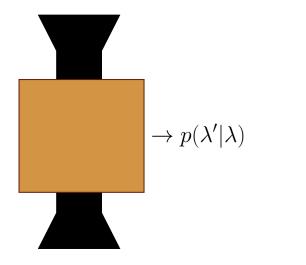


▲日 > ▲圖 > ▲ 田 > ▲ 田 > э

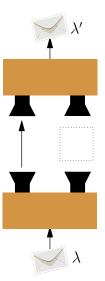
What about transformations?



What about transformations?



What about transformations?



Chiribella et. al., arXiv:0804:0180

 $\equiv \mathbf{b}$

5 DQC

- ▲□▶ ▲圖▶ ★필▶ ★필▶ - ヨー のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Label preparations (a, x)

Label preparations (a, x)Define conditional probabilities p(a|x)

Label preparations (a, x)Define conditional probabilities p(a|x)Trust that $\sum_{a} p(a|x)\mathcal{P}_{a,x}$ independent of x

Input	Output	Name
Trusted	Trusted	Entanglement-breaking
Trusted	Untrusted	Jointly measurable
NS-trusted	Trusted	Steering-like ⁴
NS-trusted	Untrusted	Bell-like

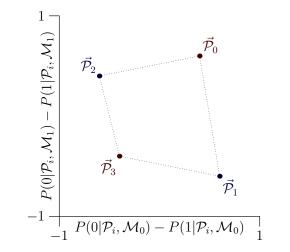
⁴Chen et. al. arXiv:1310.4970

Summary

Summary: Preparation and measurement noncontextual model \iff measure-and-prepare channel between g-trusted devices.

Summary

Summary: Violation of a contextuality inequality \iff certification of a non-classical channel between g-trusted devices.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

$$P(b|\mathcal{P}_i,\mathcal{M}_y)$$
 noncontextual $\mathfrak{P}(a,b|x,y)$ Bell-local

- 1. Calculate p, q
- 2. Convert $P(b|\mathcal{P}_i, \mathcal{M}_y)$ to P(a, b|x, y)
- 3. Plug into CHSH

$$\begin{vmatrix} x_0 & y_0 & x_0 + y_0 - 1 & 1 \\ x_1 & y_1 & -x_1 + y_1 + 1 & 1 \\ x_2 & y_2 & x_2 - y_2 + 1 & 1 \\ x_3 & y_3 & -x_3 - y_3 - 1 & 1 \end{vmatrix} \le 0.$$

Where

$$\begin{aligned} x_i &= P(0|\mathcal{P}_i, \mathcal{M}_0) - P(1|\mathcal{P}_i, \mathcal{M}_0) \\ y_i &= P(0|\mathcal{P}_i, \mathcal{M}_1) - P(1|\mathcal{P}_i, \mathcal{M}_1) \end{aligned}$$