Postquantum steering

<u>Ana Belén Sainz</u>, Nicolas Brunner, Daniel Cavalcanti Paul Skrzypczyk and Tamás Vértesi

Phys. Rev. Lett. 115, 190403 (2015)

 $\begin{array}{rcl} \mathsf{Fix} \; y & \longrightarrow & \mathsf{ensemble:} & \{\sigma^{\mathrm{A}}_{b|y}\}_{b} \,, & \longrightarrow & \rho_{\mathrm{A}} = \sum_{b} \sigma^{\mathrm{A}}_{b|y} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{b|y}\}_{b,y} \,, & & p(b|y) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{b|y}\right) \,. \end{array}$

 $\begin{array}{rcl} \mathsf{Fix} \; y & \longrightarrow & \mathsf{ensemble:} & \{\sigma^{\mathrm{A}}_{b|y}\}_{b} \,, & \longrightarrow & \rho_{\mathrm{A}} = \sum_{b} \sigma^{\mathrm{A}}_{b|y} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{b|y}\}_{b,y} \,, & & p(b|y) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{b|y}\right) \,. \end{array}$

Quantum: $\sigma_{b|y}^{A} = \operatorname{tr}_{B} \left(\mathbb{1}_{A} \otimes M_{b|y} \rho_{AB} \right)$

Given an assemblage, could it have a classical explanation?

 $\begin{array}{rcl} \mathsf{Fix} \; y & \longrightarrow \; \mathsf{ensemble:} & \{\sigma^{\mathrm{A}}_{b|y}\}_{b} \,, & \longrightarrow \; \rho_{\mathrm{A}} = \sum_{b} \sigma^{\mathrm{A}}_{b|y} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{b|y}\}_{b,y} \,, & & p(b|y) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{b|y}\right) \,. \end{array}$

Quantum: $\sigma_{b|y}^{\text{A}} = \text{tr}_{\text{B}} \left(\mathbb{1}_{\text{A}} \otimes M_{b|y} \rho_{\text{AB}} \right)$

Given an assemblage, could it have a classical explanation?

Set of "classical" assemblages

Steering Inequality: $\operatorname{tr} \sum_{by} F_{by} \sigma_{b|y}^{A} \leq \beta_{\mathrm{US}}$

 $\begin{array}{rcl} \mathsf{Fix} \; y & \longrightarrow \; \mathsf{ensemble:} & \{\sigma^{\mathrm{A}}_{b|y}\}_{b} \,, & \longrightarrow \; \rho_{\mathrm{A}} = \sum_{b} \sigma^{\mathrm{A}}_{b|y} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{b|y}\}_{b,y} \,, & & p(b|y) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{b|y}\right) \,. \end{array}$

Quantum: $\sigma_{b|y}^{\text{A}} = \text{tr}_{\text{B}} \left(\mathbb{1}_{\text{A}} \otimes M_{b|y} \rho_{\text{AB}} \right)$

Given an assemblage, could it have a classical explanation?

Set of "classical" assemblages

Steering Inequality: $\operatorname{tr} \sum_{by} F_{by} \sigma_{b|y}^{A} \leq \beta_{\mathrm{US}}$

Given an assemblage, could it have a quantum explanation?

Bipartite steering

Given
$$\{\sigma_{b|y}^{A}\}_{b,y}$$
, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$, $\operatorname{tr}(\rho_{A}) = 1$
 $\exists \rho_{AB}$, $\{M_{b|y}\}_{b,y}$ st $\sigma_{b|y}^{A} = \operatorname{tr}_{B}(\mathbb{1}_{A} \otimes M_{b|y} \rho_{AB})$

 $^{^1}N.$ Gisin, Helvetica Physica Acta 62, 363 (1989). L. P. Hughston, R. Jozsa and W. K. Wootters, Phys. Lett. A 183, 14 (1993).

Bipartite steering

Given
$$\{\sigma_{b|y}^{A}\}_{b,y}$$
, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$, $\operatorname{tr}(\rho_{A}) = 1$

 $\exists \rho_{AB}, \{M_{b|y}\}_{b,y} \text{ st } \sigma_{b|y}^{A} = \operatorname{tr}_{B} \left(\mathbbm{1}_{A} \otimes M_{b|y} \rho_{AB}\right)$

• Alice and Bob: Yes ! GHJW theorem¹

• Multipartite scenarios?

¹N. Gisin, Helvetica Physica Acta 62, 363 (1989).

L. P. Hughston, R. Jozsa and W. K. Wootters, Phys. Lett. A 183, 14 (1993).

No Signalling: $\sum_{b} \sigma^{A}_{bc|yz} = \sum_{b} \sigma^{A}_{bc|y'z}$, $\sum_{c} \sigma^{A}_{bc|yz} = \sum_{c} \sigma^{A}_{bc|yz'}$

No Signalling: $\sum_{b} \sigma^{A}_{bc|yz} = \sum_{b} \sigma^{A}_{bc|y'z}$, $\sum_{c} \sigma^{A}_{bc|yz} = \sum_{c} \sigma^{A}_{bc|yz'}$

 $\exists \rho_{ABC}, \ \{M_{b|y}\}_{b,y}, \ \{M_{c|z}\}_{c,z} \quad \text{st} \quad \sigma^{A}_{bc|yz} = \operatorname{tr}_{B} \left(\mathbbm{1}_{A} \otimes M_{b|y} \otimes M_{c|z} \rho_{ABC}\right)$

•
$$(y, z) = (0, 0), (0, 1), (1, 0)$$
:
 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

• (y, z) = (1, 1): $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$ $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

•
$$(y, z) = (0, 0), (0, 1), (1, 0):$$

 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

$$p(bc|yz) = \operatorname{tr} \left(\sigma_{bc|yz}^{\mathrm{A}} \right)$$

$$\stackrel{quantum}{=} \operatorname{tr}_{\mathrm{BC}} \left(M_{b|y} \otimes M_{c|z} \rho_{\mathrm{BC}} \right)$$

•
$$(y, z) = (1, 1)$$
:
 $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$
 $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

•
$$(y, z) = (0, 0), (0, 1), (1, 0):$$

 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

•
$$(y, z) = (1, 1)$$
:
 $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$
 $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

$$p(bc|yz) = \operatorname{tr} \left(\sigma_{bc|yz}^{\mathrm{A}} \right)$$

$$\stackrel{quantum}{=} \operatorname{tr}_{\mathrm{BC}} \left(M_{b|y} \otimes M_{c|z} \rho_{\mathrm{BC}} \right)$$

$$p(bc|yz) = \begin{cases} \frac{1}{2}, & \text{if } b \oplus c = yz, \\ 0, & \text{otherwise.} \end{cases}$$

No quantum realisation for the assemblage

(1) Postquantum assemblage $\left\{\sigma_{bc|yz}^{A}\right\}_{b,y,c,z}$

(2) Quantum correlations for every measurement by Alice:

$$p(abc|xyz) = \operatorname{tr} \left(M_{a|x} \otimes \sigma^{\mathrm{A}}_{bc|yz} \right)$$

Steering inequality: F_{bcyz}

 $\operatorname{tr}\sum_{bcyz} F_{bcyz} \sigma^{\mathrm{A}}_{bc|yz}$

Steering inequality: F_{bcyz}

$$\operatorname{tr}\sum_{bcyz}F_{bcyz}\,\sigma^{\mathrm{A}}_{bc|yz}\leq\beta_{\mathrm{Q}}$$

Steering inequality: F_{bcyz}

$$\operatorname{tr}\sum_{bcyz}F_{bcyz}\,\sigma^{\mathrm{A}}_{bc|yz}\leq\beta_{\mathrm{Q}}$$

How to compute β_Q ?

Steering inequality: F_{bcyz}

$$\operatorname{tr}\sum_{bcyz} F_{bcyz} \sigma^{\mathrm{A}}_{bc|yz} \leq \beta_{\mathrm{Q}}$$

How to compute β_Q ? \rightarrow upper bound

Steering inequality: F_{bcyz}

$$\operatorname{tr}\sum_{bcyz}F_{bcyz}\,\sigma^{\mathrm{A}}_{bc|yz}\leq\beta_{\mathrm{Q}}$$

How to compute β_Q ? \rightarrow upper bound

Almost quantum assemblages: $\widetilde{\mathrm{Q}} \supset \mathrm{Q}$

 $\beta_{\widetilde{\mathbf{Q}}} \geq \beta_{\mathbf{Q}}$

(1) Postquantum assemblage $\sigma_{bc|yz}^{A}$

Steering inequality: F_{bcyz}

$$\operatorname{tr}\sum_{bcyz}F_{bcyz}\,\sigma^{\mathrm{A}}_{bc|yz}\leq\beta_{\mathrm{Q}}$$

How to compute β_Q ? \rightarrow upper bound

Almost quantum assemblages: $\widetilde{\mathrm{Q}} \supset \mathrm{Q}$

 $\beta_{\widetilde{\mathbf{Q}}} \geq \beta_{\mathbf{Q}}$

 $\operatorname{tr}\sum_{bcyz} F_{bcyz} \, \sigma^{\mathrm{A}}_{bc|yz} > \beta_{\widetilde{\mathrm{Q}}} \quad \Rightarrow \quad \sigma^{\mathrm{A}}_{bc|yz} \text{ is postquantum}$

Example without postquantum nonlocality

(1) Postquantum assemblage $\{\sigma_{bc|yz}^{A}\}_{b,y,c,z}$

(2) Quantum correlations for every measurement by Alice:

 $p(abc|xyz) = \operatorname{tr} \left(M_{a|x} \otimes \sigma^{\mathrm{A}}_{bc|yz} \right)$

(2) Quantum correlations p(abc|xyz)

(i) p(abc|xyz) is local

(ii) Real qubit assemblage, local for all projective measurements

(iii) Qutrit assemblage, local for all POVMs².

 $^{^2\}mathsf{F}.$ Hirsch, M. T. Quintino, J. Bowles and N. Brunner, Phys. Rev. Lett, 111, 160402 (2013).

 $\Pi_{\mathsf{a}|x}(\mu) = \mu \,\Pi_{\mathsf{a}|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \,\sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \,\mathbb{1}/2$

$$\Pi_{a|x}(\mu) = \mu \,\Pi_{a|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\rm A}_{bc|yz}(\mu) = \mu \,\sigma^{\rm A}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\rm A}_{bc|yz}\right) \,\mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma^A_{bc|yz} \right) = tr_A \left(\prod_{a|x} \sigma^A_{bc|yz}(\mu) \right)$$

• Noisy measurements are linear combinations of (finite number) PVMs.

$$\Pi_{a|x}(\mu) = \mu \Pi_{a|x} + (1-\mu) \mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \operatorname{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma^A_{bc|yz} \right) = tr_A \left(\prod_{a|x} \sigma^A_{bc|yz}(\mu) \right)$$

Noisy measurements are linear combinations of (finite number) PVMs.

 $\sigma_{bc|vz}^{A}$ local for $\{x_1, \ldots, x_m\}$

$$\Pi_{a|x}(\mu) = \mu \Pi_{a|x} + (1-\mu) \mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \operatorname{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

Noisy measurements are linear combinations of (finite number) PVMs.

$$\Pi_{a|x}(\mu) = \mu \Pi_{a|x} + (1-\mu) \mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \operatorname{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

Noisy measurements are linear combinations of (finite number) PVMs.

- Four dichotomic measurements (X, Z)
- Search:

Fix $F_{bc|yz}$:

- Compute $\beta_{\widetilde{Q}}$ (SDP).
- Find max violation of the inequality by the 'local' assemblages (SDP). $\longrightarrow ~~\sigma^{\rm A}_{bc|yz}$
- Compute $\beta^* = \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma^*_{bc|yz}$, $\sigma^*_{bc|yz} := \sigma^{\mathrm{A}}_{bc|yz} (\mu = \cos(\frac{\pi}{8}))$

 $\text{If }\beta^* > \beta_{\widetilde{\mathbf{Q}}} \text{: done! } \text{, otherwise, change } F_{bc|yz} \text{, start over.}$

- Four dichotomic measurements (X, Z)
- Search:

Fix $F_{bc|yz}$:

- Compute $\beta_{\widetilde{Q}}$ (SDP).
- Find max violation of the inequality by the 'local' assemblages (SDP). $\longrightarrow ~~\sigma^{\rm A}_{bc|yz}$

- Compute
$$\beta^* = \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma^*_{bc|yz}$$
, $\sigma^*_{bc|yz} := \sigma^{\mathrm{A}}_{bc|yz}(\mu = \cos(\frac{\pi}{8}))$
If $\beta^* > \beta_{\widetilde{Q}}$: done!, otherwise, change $F_{bc|yz}$, start over.

 $\sigma^*_{bc|yz} \text{ is a postquantum qubit} \\ \text{assemblage and always gives quantum} \\ \text{correlations for PVMs} \\$

- Four dichotomic measurements (X, Z)
- Search:

Fix $F_{bc|yz}$:

- Compute $\beta_{\widetilde{Q}}$ (SDP).
- Find max violation of the inequality by the 'local' assemblages (SDP). $\longrightarrow ~~\sigma^{\rm A}_{bc|yz}$

- Compute
$$\beta^* = \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma^*_{bc|yz}$$
, $\sigma^*_{bc|yz} := \sigma^{\mathrm{A}}_{bc|yz}(\mu = \cos(\frac{\pi}{8}))$
If $\beta^* > \beta_{\widetilde{\Omega}}$: done!, otherwise, change $F_{bc|yz}$, start over.

 $\sigma^*_{bc|yz} \text{ is a postquantum qubit} \\ \text{assemblage and always gives quantum} \\ \text{correlations for PVMs} \\$

$$\tilde{\sigma}^*_{bc|yz} = \frac{1}{3} \sigma^*_{bc|yz} + \frac{2}{3} \operatorname{tr} \left(\sigma^*_{bc|yz} \right) |2\rangle \langle 2|$$

 $\tilde{\sigma}^*_{bc|yz} \text{ is a postquantum qutrit} \\ assemblage and always gives \\ quantum correlations for POVMs$

Summary and open questions

 $\bullet~$ Steering beyond quantum theory $\rightarrow~$ multipartite scenarios

• Genuinely new effect

 \rightarrow postquantum steering $\not\Rightarrow$ postquantum nonlocality

• Fundamental difference between bipartite and multipartite scenarios

Summary and open questions

 $\bullet~$ Steering beyond quantum theory $\rightarrow~$ multipartite scenarios

• Genuinely new effect

 \rightarrow postquantum steering $\not\Rightarrow$ postquantum nonlocality

• Fundamental difference between bipartite and multipartite scenarios

• Insight on the characterisation of quantum phenomena

General framework for non-signalling assemblages
 → quantify postquantumness

• Information-theoretic applications of postquantum steering

Thanks !!!

Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul Skrzypczyk, Tamás Vértesi Phys. Rev. Lett. 115, 190403 (2015)