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The law of causality [...] Is a
Causality relic of a bygone age,

surviving, like the monarchy,

only because It Is

Reichenbach's erroneously supposed to do

prlnCIpIe no harm
Correlations .
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Non-Local Correlations

John Bell
1964

PR

XY =A0DRB

1994
Sandu Popescu Daniel Rohrlich
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Explaining Correlations in a Causal Structure
1) Common Cause

A B

\C/

2) Influence

A

3) Drop the Causal Structure?

1956 Lt

Hans Reichenbach
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Causality and Randomness

future

If Ais freeand B is

correlated with A,
then Bisin A's futut

free
past A® ————>ep
Aisfreeifitis past future

iIndependent of Cand D
(of all except its future)
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a
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fla)=a'

W(a)-a

74

Environment

Example 1: W(d')=a® 1
Contradiction for f(a) = a
(” Grandfather paradox”)
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Alice
a fla)=a'
N f
W(a)-a W T a’

Environment

Example 3: W(a') =0
No contradiction.

But: can be modeled causally: W —° A — £(0)
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Alice
a_, f fla)=a
Bob
b { g q(b)=b
Wi(@.b) | |W,(a.b)
€
W |

Environment

Do there exist /ogically consistent
scenarios that are not causal?



Dropping the Causal Structure

Alice

Bob Oreshkdv
b, g 9(b)=
W,@.b) | (W,(ab)
€
W |

Environment

Brukner

Two parties: No. Consistency implies causality



Consistency without Causality is Possible

Alice
a
> >
Bob
b
> >
Charlie
C
Baumeler > > Feix

Environment



The Three-Party Game

Alice

a

> xm

Bob

> Yy, m

Charlie

> zm

>

m=0 — a=yPz

Gamewonif m=1 =— b=x®=z
m=2 — c=xdy



Game Cannot Always Be Won with Fixed Order

Alice Bob Charlie

> X, 0 3 ¥ 0 3 20

1
Probla =y ® 2] = 3

Otherwise: Game lost
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Alice

X, m

74

Zm |e————y ym

Charlie Bob

W inconsistent
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W =1/ X, m + 1/2 X, m
\ neg \neg

Z,m [€——y y,m z,m [ €—— ym
neg

W is consistent:
The value a party receives
IS /1ndependent of what she

cant
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Always Winning the Game with a Consistent W/
Example: m=0

W =1/ X, m + 1/2 X, m
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Always Winning the Game with a Consistent W/
Example: m=0. The game is won.

y+ y+Z
W=12 AXx™" + 1/2 X m
y+z \ neg / .7+ \neg
Z,Mm |[€—1 y,m Z,m ¥, m
y ¥ Y+ 1%
W allows for winning the

game:
Each party sends the value she

roraoin/oc YODPoaA winth har awin
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How to define it intrinsically?

00000........ 000

31415926535..

N

most strings S

N

they are random
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Back to Randomness

Alan Turing
1936

UM

1943
Stephen Kleene




Work Extraction

The model

S @ X 1000..00

! ! |

finite string from which knowledge about S
work Is to be extracted (initial state) l

finite, sufficiently long tape



Work Extraction

The model

S @ X | 000..00

I reversible computation

000..00 @ X 1000..00

W(SIX)
—> work: W(S|X) KT In2



Bounds on the Work Value

Upper bound:
W(S|X) <len(S) — Ky (S| X)

Charles H. Bennett

length of the shortest
program
for U to compute S given X

Andrei Kolmogorov




Bounds on the Work Value

Upper bound:
W (S|X) < len(S) — Ky (S| X)

Lower bound:
C' compression algorithm with helper, i.e.,

C : S||X — C(S, X)||X reversible:

W(S|X) Z 1611(8) . 1en(C(S,X)) Wojciech Zurek
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Back to Non-Local

rrela io?

C? S .
Counterfactual reasoning

Consequence of non-
If all (A,B) cortBIAlE@Ns are possible...

A— < B

PR

X < — Y

... then X'and Y must be perfectly
random
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Eor el tio?s .
actual-only reasoning

(a,b) incompressible:
K(a™,b") 1
on for n —» o0 and a™ == (ay, ..., ay)
a=(a;) — — b= (b;)

i DY = a; Ob;



Back to Non-Local

or el?tlop
actual-only reasoning

non-signaling

K(z"|a™) 3
K(mn ‘a’n? bn) for n — o0, and symmetric
a:(az)—) €< b:(bz)
PR
T = (T;) «— — Yy = (¥i)
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Factual-only reasoning

If (A,B) is incompressible...

A “— B
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Non-Local Correlations

Factual-only reasoning

If (A,B) is incompressible...

AT Quantum Violation — B
X <«— of Chained Bell | v

.. then X'and Y cannot be computable
even given the respective inputs

from parallel-repetition theorem

Ran Raz 1998 3
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Non-Local Correlations

All-or-Nothing Feature of Church-Turing
Hypothesis

Beyond TM Beyond TM

é _ _ h
Quantum Violation

of Chained Bell

<« —>

Beyond TM Beyond TM

I the experimenter can generate
(maximally) uncomputable daia,
then so can the measured photons
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Epilogue: Complexity and Time Asymmetry

Which quantity is monotonic in time? Macrostate

size?

Which Is not? Structure?



Epilogue: Complexity and Time Asymmetry

Context-free macrostate (of a finite string

log-size of R >/

smallest set
M(k) with
complexity
K
containing S

X~




Epilogue: Complexity and Time Asymmetry

Context-free macrostate (of a finite string

log-size of
smallest set
M(k) with
complexity
K
containing S

|

5)

S Is a typical element of Mg, )




Epilogue: Complexity and Time Asymmetry

Context-free macrostate (of a finite string

log-size of
smallest set
M(k) with
complexity
K
containing S

|

5)
macragtate: M( )

S Is a typical element of Mg, )
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log-size of macrostate

complexity of macrostate

i N




Epilogue: Complexity and Time Asymmetry

complexity of microstate

log-size of macrostate

complexity of macrostate

i N
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