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1) All separable states lead to unsteerable assemblages

2) Some entangled states also lead to unsteerable assemblages 
(in the sense that Alice and Bob cannot detect the existing 
entanglement if they make no assumptions on Alice’s side)

unsteerable
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 Take advantage of the convexity of the set, by using convex/concave functions to 
form steering criteria   (cumbersome)

 E.g.,

x Tailored to specific measurement scenarios

x If it doesn’t work, pray to come up with a  
better one! 

...or, ask Howard! 



 Powerful SDP methods

 Freely choose the measurements 
performed

 Can increase number of measurements 
to improve steering detection

X Works only for small dimensional 
systems (small assemblage)

X Purely numerical methodsSteering maps and their application to dimension-
bounded steering, arXiv:1412:2623 (2014)  
Tobias Moroder, (et al.- 1) , Otfried Gühne
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 Entanglement
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 If no violation found, add more observables to the set:   HIERARCHY

e.g.,      2 ...A A B BBS q p q p p 



 We don’t have bipartite state in our hands (neither do we have a PPT-like technique) 

 We only have the set of Bob’s conditional states

 But…

If  Bob’s assemblage {σa|x} is unsteerable, there always exists a 
separable bipartite state,

and commuting observables for Alice,

that can reproduce Bob’s assemblage,
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 For any unsteerable assemblage, we can always define a moment matrix –with commuting 
observables on Alice- that is positive semi-definite,

 Example I:  All continuous variable states up to second-order moments

 We can show analytically, 

 : US : 0AB AB AB     Similar to PPT for entanglement
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Wiseman et al.’s necessary and sufficient steering criterion 
for Gaussian states and Gaussian measurements.

<AqAp>: unobservable



Example II:  d=2 Werner states

 We choose:

A] We can proceed analytically,
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B] We can proceed numerically. 

 Checking whether  Γ is positive semi-definite for all free parameters is an instance of a  
semi-definite program.

(just like in NPA)

We find numerically a violation  for all   ࢝ ൐ ૚
√૜

 The dual of the SDP gives the optimal steering witness for this class of states and 
measurements,

satisfied by all unsteerable assemblages, and violated for all ࢝ ൐ ૚
√૜

.

Maximizes smallest eigenvalue of Γ

Observable values

Linear constraints between among 
free parameters
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 We would like to check the steerability of this state with experimentally-friendly 
measurements.

 We consider only quadrature measurements for Alice and Bob.

 Best current detection is due to Jones and Wiseman:

They consider   infinitely many binned quadrature measurements for both Alice and Bob, 
and find steering for all,

࢝ ൒ ૙. ૠૠ

 Entropic steering criteria, employing  two (unbinned) quadrature measurements for both 
Alice and Bob, get violated for a much weaker ࢝ ൒ ૙. ૢ૝.

 Criteria  using only second-order moments  do not get violated      
for any ࢝.



 To make a fair comparison, we also choose only quadrature measurements for both 
Alice and Bob, with Alice having only two inputs,

 11x11  moment matrix :  tractable only numerically (but very efficiently  ~0.3 sec).
 To see what measurements are involved, let’s see the optimal steering witness given by 

the dual of the SDP,

 The witness get’s a negative value for all  ࢝ ൒ ૛
૜
	ൎ ૙. ૟૟૟ૠ.
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We introduced a new method for steering detection:

 Valid for any dimension (discrete or continuous)

 Other steering criteria are derived as special cases (just like with Shchukin
and Vogel for CV entanglement)

 Able to beat current best steering criteria

 Provides a systematic framework to analytically derive new non-linear criteria 

 Provides optimal steering witnesses

 Allows you to add/remove any measurement you want to include/exclude in 
the detection




