(Quantum?) Processes and Correlations with no definite causal order

> Cyril Branciard Institut Néel - Grenoble, France

Workshop on Quantum NonLocality, Causal Structures and Device-Independent Quantum Information

Tainan, Dec. 10-14, 2015

Classical causal relations

Let's enter the quantum world...

€ B

Molivation

- In quantum mechanics, some variables may be indefinite (e.g. X, P)
- What about causal relations?
 - In "standard QM", measurements are done in space-time Fixed measurement positions, time evolution, tensor product structure... assume a fixed causal structure
 - Can we go beyond this? Remove time and causal structure from QM?
 - What new phenomenology arises?
 Experiments, applications?

Oulline

o The process matrix framework

- Analogy with entanglement &
 Bell nonlocality
- The "Quantum switch" as a causally nonseparable process

Oulline

o The process matrix framework

- Analogy with entanglement &
 Bell nonlocality
- The "Quantum switch" as a causally nonseparable process

The process matrix framework

[O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012)]

A physical system exits the lab \mathcal{H}^{AO} Alice can choose some possible action x to perform, gets an outcome a

> A physical system enters the lab

No shared reference frame, no global time

Assuming "local quantum mechanics": CP map Malx

The process matrix framework

[O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012)]

• Correlations are bilinear functions of Alice and Bob's CP maps: $P(a,b|x,y) = Tr[Ma|x \otimes Mb|y \cdot W]$

W = "Process matrix"

The process matrix framework [OCB 2012]

- Some W matrices are compatible with a definite causal order: $W^{A \leq B}$ or $W^{B \leq A}$ (e.g. standard quantum circuits)
- The causal order may only be known with some probability q:

 $W_{sep} = q W^{A \leq B} + (1-q) W^{B \leq A}$

- W matrices of this form are said to be causally separable
- Otherwise, they are causally nonseparable, and are incompatible with a definite causal order
 - Those may generate correlations with no definite causal order, which violate "causal inequalities"

A causal game

Bob

[OCB 2012]

A causal inequality

o Game:

- ▶ If y'=0, Alice must guess Bob's input bit y
- ▶ If y'=1, Bob must guess Alice's input bit x
- Success probability: $p_{succ} = 1/2 [p(a=y|y'=0) + p(b=x|y'=1)]$
- Assuming a definite causal order (-> no 2-way signaling):

 \triangleright psucc $\leq 3/4$

Can be violated in the process matrix framework:

$$W = \frac{1}{4} \left[\mathbb{1} + \frac{\mathbb{1}^{A_I} Z^{A_O} Z^{B_I} \mathbb{1}^{B_O} + Z^{A_I} \mathbb{1}^{A_O} X^{B_I} Z^{B_O}}{\sqrt{2}} \right]$$

$$\Rightarrow p_{succ} = \frac{1+1/\sqrt{2}}{2}$$

$$M_{a|x}^{A_{I}A_{O}} = \left(\frac{1 + (-1)^{a}Z}{2}\right)^{A_{I}} \otimes \left(\frac{1 + (-1)^{x}Z}{2}\right)^{A_{O}}$$
$$M_{b|y,y'=0}^{B_{I}B_{O}} = \left(\frac{1 + (-1)^{b}X}{2}\right)^{B_{I}} \otimes \left(\frac{1 + (-1)^{y+b}Z}{2}\right)^{B_{O}}$$
$$M_{b|y,y'=1}^{B_{I}B_{O}} = \left(\frac{1 + (-1)^{b}Z}{2}\right)^{B_{I}} \otimes \frac{1^{B_{O}}}{2}$$

Process matrices vs correlations

2 kinds of objects which are "incompatible with any definite causal order":

process matrices / correlations

- Do we need to violate a causal inequality to prove the causal nonseparability of a W matrix?
 - Do all causally nonseparable W matrices violate a causal inequality?
 - How to test for causal nonseparability otherwise?
- What could be observed in the lab?
 - Could we demonstrate causal nonseparability in practice, even if we don't know how to violate a causal inequality?

Oulline

o The process matrix framework

- Analogy with entanglement &
 Bell nonlocality
- The "Quantum switch" as a causally nonseparable process

Detected by entanglement witnesses

Bell nonlocality

Independen

Violate Bell inequalities

Causal witnesses (1) Entanglement witnesses

Causal inequalities

Bell inequalities

⁽¹⁾ [M. Araújo, CB et al., New J. Phys. 17, 102001 (2015)]

⁽¹⁾ [M. Araújo, CB et al., New J. Phys. 17, 102001 (2015)]

Wsep

Causal witnesses (1) Entanglement witnesses

× Whonsep $\neq q W^{A \leq B} + (1-q) W^{B \leq A}$

for any Whonsep, there exists a causal witness S such that

> Tr[S.Wnonsep] < 0 and Tr[S.Wsep] 2 0 for all Wsep

Can be constructed efficiently

⁽¹⁾ [M. Araújo, CB et al., New J. Phys. 17, 102001 (2015)]

Bell nonlocal correlation

Bell inequality

facets of the "local polytope"

Correlations with no definite causal order Bell-nonlocal correlations

Causal inequalities

Bell inequalities

correlation with no definite causal order

causal inequality

facets of the "causal polytope" ⁽¹⁾

E.g. in the case of binary inputs \$ outputs⁽¹⁾: $p(a=y,b=x) \le 1/2$

Correlations with no definite causal order Bell-nonlocal correlations

Causal inequalities

Bell inequalities

⁽¹⁾ [CB et al., New J. Phys. (in press, 2015); arXiv:1508.01704 (quant-ph)]

Oulline

o The process matrix framework

- Analogy with entanglement &
 Bell nonlocality
- The "Quantum switch" as a causally nonseparable process

[G. Chiribella et al., PRA 88, 022318 (2013); Araújo et al., PRL 113, 250402 (2014); Procopio et al., Nat. Commun. 6, 7913 (2015)]

 $\left(|H\rangle + |V\rangle\right) \otimes |\psi\rangle \to |H\rangle \otimes BA|\psi\rangle + |V\rangle \otimes AB|\psi\rangle$

[G. Chiribella et al., PRA 88, 022318 (2013); Araújo et al., PRL 113, 250402 (2014); Procopio et al., Nat. Commun. 6, 7913 (2015)]

[G. Chiribella et al., PRA 88, 022318 (2013); Araújo et al., PRL 113, 250402 (2014); Procopio et al., Nat. Commun. 6, 7913 (2015)]

 $\left(|H\rangle + |V\rangle\right) \otimes |\psi\rangle \to |H\rangle \otimes BA|\psi\rangle + |V\rangle \otimes AB|\psi\rangle$

As a process matrix:

 $|w\rangle = |H\rangle^{C_{I}'} |\psi\rangle^{A_{I}} |\mathbb{1}\rangle^{A_{O}B_{I}} |\mathbb{1}\rangle^{B_{O}C_{I}} \qquad W = |w\rangle\langle w|$ $+|V\rangle^{C_{I}'} |\psi\rangle^{B_{I}} |\mathbb{1}\rangle^{B_{O}A_{I}} |\mathbb{1}\rangle^{A_{O}C_{I}} \qquad W = |w\rangle\langle w|$

causally nonseparable!

[G. Chiribella et al., PRA 88, 022318 (2013); Araújo et al., PRL 113, 250402 (2014); Procopio et al., Nat. Commun. 6, 7913 (2015)]

▶ A causal witness ⁽¹⁾ can be constructed and measured $Tr[S.W_{switch}] < 0$ and $Tr[S.W_{sep}] \ge 0$ for all W_{sep}

▶ The quantum switch does not violate any causal inequality ^(1,2)

⁽¹⁾ [M. Araújo, CB et al., New J. Phys. 17, 102001 (2015)] ⁽²⁾ [O. Oreshkov, C. Giarmatzi, arXiv:1506.05449 (2015)]

Conclusion - Quelook

- New causal relations in the quantum world: Causally non separable processes
- Gave some physical content to the process matrix formalism
- Clarified the link between causal nonseparability
 of a process and violation of a causal inequality
- Rich analogy with entanglement and Bell nonlocality:
 to be exploited further!
- Applications for Quantum Information? -> Beyond quantum computers!
- Other examples of nonseparable processes?
 Bipartite example that can be implemented?
- Violation of a causal inequality in practice???

Thank you for your altention