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Multiparticle entanglement



Entanglement & separability

Alice and Bob share a state |ψ〉.

A pure state |ψ〉 is separable iff it is a product state:

|ψ〉 = |a〉A|b〉B = |a, b〉.
Otherwise it is entangled.

Mixed states: Consider convex combinations: % is separable, if

% =
∑

i
pi |ai 〉〈ai | ⊗ |bi 〉〈bi |, mit pi ≥ 0,

∑
i
pi = 1.

Interpretation: Entanglement cannot be generated by local operations and
classical communication.
R. Werner, PRA 40, 4277 (1989).
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The separability problem

Question

Given %, is it entangled or separable?

Geometrical interpretation

The set of all separable states is convex.
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Multiparticle entanglement

Several possibilities:

Fully separable:
|ψfs〉 = |000〉

Biseparable:
|ψbs〉 = |0〉 ⊗ (|00〉+ |11〉)

Genuine multiparticle entangled:

|GHZ 〉 = |000〉+ |111〉 oder |W 〉 = |001〉+ |010〉+ |100〉.

Mixed states: Convex combinations, again.



Why is entanglement interesting?

Quantum cryptography

Source S sends entangled
states to A and B.

From the correlations a key
can be generated.

If the measurement results
are compatible with a
separable state, then the
scheme is not secure.
A.K. Ekert, PRL 67, 661 (1991);

M. Curty et al, PRL 92, 217903 (2004).

One-way quantum computer

By making local
measurement on a cluster
state, a quantum computer
can be realized.

Problem: Experimental
generation of the cluster
state.

R. Raussendorf, H. Briegel, PRL 86, 5188 (2001).



Entanglement and precision measurements

The task

Assume we have a device D indu-
cing the transformation

|0〉 7→ |0〉, |1〉 7→ e iφ|1〉
How can we estimate φ?

Simple strategy

Prepare |ψ〉 = |0〉+ |1〉.

Apply D: |ψ′〉 = |0〉+ e iφ|1〉.

Measure 〈σx〉 ∼ cos(φ).

Uncertainty:

∆φ =
∆〈σx〉
|∂〈σx〉/∂φ|

= 1

Repeat N times:

∆φ ≥ 1/
√
N

Using entanglement

Prepare N qubit state:

|GHZN〉 = |0...0〉+ |1...1〉

Apply D and measure
〈σ⊗Nx 〉 ∼ cos(Nφ).

Uncertainty:

∆φ =
1

N

Review: V. Giovanetti et al, Science 306, 1330 (2004).
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Graph states

1) Start with a product state
on N qubits in the state
|+〉 = |x+〉 = (|0〉+ |1〉)/

√
2



Graph states

1) Start with a product state on N
qubits in the state |+〉 = |x+〉 =
(|0〉+ |1〉)/

√
2

2) Let some of them interact pairwise
via some Ising-type interaction:

Cab = e i
π
4 (1−σ(a)

z −σ
(b)
z +σ(a)

z σ(b)
z )}

This corresponds to a phase gate.



Graph states

1) Start with a product state on N
qubits in the state |+〉 = |x+〉 =
(|0〉+ |1〉)/

√
2

2) Let some of them interact pairwise
via some Ising-type interaction:

Cab = e i
π
4 (1−σ(a)

z −σ
(b)
z +σ(a)

z σ(b)
z )}

This corresponds to a phase gate.

3) Resulting state is the graph state.

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).



Graph states as stabilizer states

1) For any graph, we define sta-

bilizing operators as (Xi = σ
(i)
x )

Si = Xi

⊗
j∈N(i)

Zj .

2) The graph state |G 〉 is the un-
ique state fulfilling

Si |G 〉 = |G 〉.

GHZ as example

The GHZ state |GHZ 〉 = |000〉+
|111〉 fulfills

X1X2X3|GHZ 〉 = |GHZ 〉
Z1Z21|GHZ 〉 = |GHZ 〉
1Z2Z3|GHZ 〉 = |GHZ 〉

and corresponds (up to local ro-
tations) to the graphs
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Graph states

Further examples of graph
states: General GHZ states:

and cluster states:

Properties of graph states:

They serve as the central
resource in the one-way
quantum computer.

R. Raussendorf, H.J. Briegel, PRL 86, 5188

(2001)

All code words in quantum
error correcting codes
correspond to graph states.

D. Schlingemann and R.F. Werner, PRA 65,

012308 (2002).

The violate local realism in an
extreme manner.

O. Gühne et al., PRL 95, 120405 (2005).



Hypergraph states

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1



Basic definitions

In a hypergraph, edges can contain more than two vertices.

The controlled phase gate on an edge e is given by

Ce = 1− 2|1 · · · 1〉〈1 · · · 1|

The hypergraph state is:

|H〉 =
∏
e∈E

Ce |+〉⊗N

C. Kruszynska, B. Kraus. PRA 79, 052304 (2009), M. Rossi, M. Huber, D. Bruß,C. Macchiavello, NJP 15, (2013).
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The nonlocal stabilizer

Define for each qubit the operator

gi ≡
(∏
e∈E

Ce

)
Xi

(∏
e∈E

Ce

)
= Xi ⊗

(∏
e3i

Ce\{i}
)

Then:
gi |H〉 = |H〉 for all i

The stabilizing operators gi :

... are hermitean, but nonlocal,

... commute: gigj = gjgi ,

... generate a group with 2N elements.
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Examples

The three-qubit HG state

For the simplest nontrivial HG we have

|H3〉 =
1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉 − |111〉)

after a Hadarmard transformation on the third qubit:

|H3〉 =
1

2
(|000〉+ |010〉+ |100〉+ |111〉).

This state was also called “logical AND state”.

S. Abramsky, C. Costantin, arXiv:1412.5213



Pauli operations

Three possibilities

How does |HG 〉 7→ σ
(i)
? |HG 〉 change the hypergraph?

Z-tranformation: Add / remove the edge e = {i}, since C{i} = σ
(i)
z .

X-transformation: Determine the set

E (k) = {e \ {k}|e ∈ E (k)}.

by taking all edges e which contain k and then removing k out of all
these edges.
Then, remove or add the edges from E to the HG, depending on
whether they exist already in the HG or not.

Y-transformation: Combined X- and Z- transformation.

R. Qu, J. Wang, Z. Li, Y. Bao, PRA 87, 022311 (2013).



Example

X1 7→ Z2,Z3 7→ X2 7→ Z1 7→ X3

Consequence

There is only one HG state for three qubits.
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LU classes for four qubits

One finds 27 LP equivalence classes, which turn out to be LU inequivalent

O. Gühne et al., J. Phys. A: Math. Theor. 47, 335303 (2014)
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Some interesting states

States with maximally mixed single-qubit marginals are:

No. 3:

|V3〉 =

√
3

4
|D4〉+

1

2
|GHZ−4 〉.

No. 9: With |γ〉 = (|00〉+ |01〉 − |10〉+ |11〉)/2 one has:

|V9〉 =
1√
2
|GHZ−4 〉+

1

2
|01〉|γ〉+

1

2
|10〉|γ〉,

No. 14:

|V14〉 =

√
3

4
|D4〉+

1

2
|GHZ−4 〉,



Discussion

LU-LP Problem

Is LU equivalence always equivalent to LP equivalence?

For many cases yes, but in general ... ?

Counterexamples would be useful.

Questions

Is there a general rule to identify maximally entangled HG states?

What are the applications of these states?



Bell inequalities for HG states



The first idea

First Problem

Can the non-local stabilizer be used for characterizing local correlations?

The state |H3〉 is a +1 eigenstate of

g1 = X1 ⊗ C23 = X1 ⊗ (|00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|)

So we have
P(+−−|XZZ ) = 0.

Furthermore:

P(−+ +|XZZ ) + P(−+−|XZZ ) + P(−−+|XZZ ) = 0,

⇒ The non-local stabilizer predicts some local perfect correlations!
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Hardy argument

If a LHV model satisfies the conditions from zero correlations from the
state |H3〉 then it must fulfill

P(+−−|XXX ) + P(−+−|XXX ) + P(−−+|XXX ) = 0.

In contrast, for |H3〉 we have

P(+−−|XXX ) =
1

16

This argument can be generalized to N qubits.

. . .

N qubits
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Genuine multiparticle nonlocality

Taking the zero terms and P(−−−|XXX ) and P(−−−|ZZZ ) one has a
Bell-Svetlichny inequality for genuine multiparticle nonlocality,

〈B(2)
3 〉 =

[
P(+−−|XZZ ) + P(−+ +|XZZ )

+P(−+−|XZZ ) + P(−−+|XZZ ) + permutat.
]

+P(−−−|XXX )− P(−−−|ZZZ ) ≥ 0,

which is violated by |H3〉 with 〈B(2)
3 〉 = −1\16.

This inequality is a facet of the classical polytope.



Scaling

Question & Answer

Does the violation of local realism increase with the number of
particles? What are the interesting many-qubit HG states?

Take three- and four-uniform fully connected HG states. They can
be seen as generalizations of GHZ states.



Scaling

For three-uniform HG states and for even m with 1 < m < N:

〈X . . .X︸ ︷︷ ︸
m

Z . . .Z 〉 =

{
+ 1

2 if m = 2 mod 4,

− 1
2 if m = 0 mod 4.

A similar result holds for four-uniform HG states

This can be combined with the Mermin-type Bell operator:

BN = −
[
AAA . . .AA

]
+
[
BBA . . .A + permutat.

]
−

−
[
BBBBA . . .A + permutat.

]
+
[
. . .
]
− . . .



Results

For three-uniform HG states the violation of Bell inequalities scales
exponentially with the number of particles:

〈BN〉Q
〈BN〉C

N→∞∼
√

2
N

For four-uniform HG states the scaling is:

〈BN〉Q
〈BN〉C

N→∞∼ 1.20711N

For four-uniform HG states also the state after loosing one qubit
violates Bell inequalities with the same scaling.

For three-uniform HG states the reduced state is still highly
entangled.

M. Gachechiladze, C. Budroni, O. Gühne, arXiv:1507.03570



Results

For three-uniform HG states the violation of Bell inequalities scales
exponentially with the number of particles:

〈BN〉Q
〈BN〉C

N→∞∼
√

2
N

For four-uniform HG states the scaling is:

〈BN〉Q
〈BN〉C

N→∞∼ 1.20711N

For four-uniform HG states also the state after loosing one qubit
violates Bell inequalities with the same scaling.

For three-uniform HG states the reduced state is still highly
entangled.

M. Gachechiladze, C. Budroni, O. Gühne, arXiv:1507.03570



Applications

HG states are useful in the standard scheme of metrology

Reason: The visibility of the cos(Nφ) component is related to the
violation of the Mermin inequality.

W.B. Gao et al., Nat. Phys. 6, 331 (2010)

HG states are useful in some schemes of measurement based
quantum computation.

M. Gachechiladze, C. Budroni, O. Gühne, arXiv:1507.03570

Open Question: HG states & topological models?

B. Yoshida, arXiv:1508.03468, J. Miller, A Miyake, arXiv:1508.02695.



Conclusion

HG states are a generalization of graph states

They can be described by a non-local stabilizer formalism

They violate Bell inequalities in many ways and are robust against
particle loss

The can be useful in metrology & quantum computation
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