Quantum Causal Structures

Christian Majenz University of Copenhagen Joint work with Rafael Chaves and David Gross, University of Cologne (arXiv:1407.3800)

Workshop on Quantum Nonlocality, Causal Stuctures and Device-Independent Quantum Information, NCKU Tainan

10.12.2015

Motivation

Can we rule out certain causal relationships by just looking at statistical data?

Can we rule out certain causal relationships by just looking at statistical data?

Example:

Can we rule out certain causal relationships by just looking at statistical data?

Example:

 Rigorous mathematical way to distinguish different causal relations

- Rigorous mathematical way to distinguish different causal relations
- Introduced by Pearl in the 1980s

- Rigorous mathematical way to distinguish different causal relations
- Introduced by Pearl in the 1980s
- Necessary conditions for probability distributions to come from more restrictive causal model

- Rigorous mathematical way to distinguish different causal relations
- Introduced by Pearl in the 1980s
- Necessary conditions for probability distributions to come from more restrictive causal model
- ► Tools: Bayesian networks, entropies, convexity

- Rigorous mathematical way to distinguish different causal relations
- Introduced by Pearl in the 1980s
- Necessary conditions for probability distributions to come from more restrictive causal model
- ► Tools: Bayesian networks, entropies, convexity
- [?] What if the underlying processes are quantum?

- Rigorous mathematical way to distinguish different causal relations
- Introduced by Pearl in the 1980s
- Necessary conditions for probability distributions to come from more restrictive causal model
- ► Tools: Bayesian networks, entropies, convexity
- [?] What if the underlying processes are quantum?
 - Bell nonlocality etc. special cases of this

Structure

Motivation

Classical Bayesian Networks

Quantum Entropic Description Quantum Causal Structure Entropic Description

Application Information Causality

Computational Techniques

Classical

Any directed acyclic graph (DAG) specifies a causal structure:

▶ Directed graph: G = (V, E) with $E \subset V \times V$

- ▶ Directed graph: G = (V, E) with $E \subset V \times V$
- Acyclic: no cycle (causality)

- ▶ Directed graph: G = (V, E) with $E \subset V \times V$
- Acyclic: no cycle (causality)
- ▶ parents of v: $pa(v) = \{w \in V | (w, v) \in E\}$

- ▶ Directed graph: G = (V, E) with $E \subset V \times V$
- Acyclic: no cycle (causality)
- ▶ parents of v: pa(v) = { $w \in V | (w, v) \in E$ }
- children, ancestors, descendants, non-descendants etc.

Bayesian network: generalization of Markov chain

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$
- example: Markov chain, $X \to Y \to Z \implies Z \perp X | Y \Leftrightarrow p(x, y, z)p(y) = p(x, y)p(y, z)$

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$
- example: Markov chain, $X \to Y \to Z \implies Z \perp X | Y \Leftrightarrow p(x, y, z)p(y) = p(x, y)p(y, z)$
- formalism requires access to joint probability distribution

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$
- example: Markov chain, $X \to Y \to Z \implies Z \perp X | Y \Leftrightarrow p(x, y, z)p(y) = p(x, y)p(y, z)$
- formalism requires access to joint probability distribution
- \implies obstacle for quantum generalization

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$
- example: Markov chain, $X \to Y \to Z \implies Z \perp X | Y \Leftrightarrow p(x, y, z)p(y) = p(x, y)p(y, z)$
- formalism requires access to joint probability distribution
- \implies obstacle for quantum generalization
 - hard algebraic equations

- Bayesian network: generalization of Markov chain
- distribution is product of conditional distributions
- characterization: $v \perp nd(v) | pa(v)$
- example: Markov chain, $X \to Y \to Z \implies Z \perp X | Y \Leftrightarrow p(x, y, z)p(y) = p(x, y)p(y, z)$
- formalism requires access to joint probability distribution
- \implies obstacle for quantum generalization
 - hard algebraic equations
 - easier: look at entropies

Marginal scenario

Only some RVs are observed

Marginal scenario

- Only some RVs are observed
- Example:

Marginal scenario

- Only some RVs are observed
- Example:

 \rightarrow Marginal scenario: {A, B, C}

Quantum

• $\rho \in \mathbb{S}(\mathcal{H})$ mixed quantum state on $\mathcal{H} = \mathbb{C}^d$

- $ho \in \mathbb{S}(\mathcal{H})$ mixed quantum state on $\mathcal{H} = \mathbb{C}^d$
- Von Neumann entropy

$$S(\rho) = -\mathrm{tr}\rho\log
ho$$

- $ho \in \mathbb{S}(\mathcal{H})$ mixed quantum state on $\mathcal{H} = \mathbb{C}^d$
- Von Neumann entropy

$$S(\rho) = -\mathrm{tr}\rho\log
ho$$

• Multipartite state $\rho \in \mathbb{S}(\mathcal{H})$ with $\mathcal{H} = \mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$

- $ho \in \mathbb{S}(\mathcal{H})$ mixed quantum state on $\mathcal{H} = \mathbb{C}^d$
- Von Neumann entropy

$$S(
ho) = -\mathrm{tr}
ho\log
ho$$

• Multipartite state $\rho \in \mathbb{S}(\mathcal{H})$ with $\mathcal{H} = \mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$

$$\blacktriangleright \rho_I = \operatorname{tr}_{I^c} \rho$$
Interlude: Entropies

- $\rho \in \mathbb{S}(\mathcal{H})$ mixed quantum state on $\mathcal{H} = \mathbb{C}^d$
- Von Neumann entropy

$$S(
ho) = -\mathrm{tr}
ho\log
ho$$

• Multipartite state $\rho \in \mathbb{S}(\mathcal{H})$ with $\mathcal{H} = \mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$

$$\rho_I = \operatorname{tr}_{I^c} \rho$$

► Von Neumann entropy vector: $s(\rho) = (S(\rho_I))_{I \subset \{1,...,n\}} \in \mathbb{R}^{2^n}$

Convex cones

Convex cones

What is a convex cone?

What is a convex cone?

What is a convex cone?

Set of all quantum entropy vectors:

Set of all quantum entropy vectors:

 $\Gamma_n = \{s(\rho) | \rho \text{ n-party quantum state} \}$

Entropy Cone

Set of all quantum entropy vectors:

 $\Gamma_n = \{s(\rho) | \rho \text{ n-party quantum state} \}$

 $\overline{\Gamma}_n$ is a convex cone (Pippenger, 2003)

Entropy Cone

Set of all quantum entropy vectors:

 $\Gamma_n = \{s(\rho) | \rho \text{ n-party quantum state} \}$

 $\overline{\Gamma}_n$ is a convex cone (Pippenger, 2003) Classical entropy cone: $\overline{\Sigma}_n$

Describe convex cone via linear inequalities

Describe convex cone via linear inequalities

Describe convex cone via linear inequalities

Inequalities for Σ_n : information inequalities

Describe convex cone via linear inequalities

Inequalities for Σ_n : *information inequalities* Example: monotonicity $H(X_1X_2) - H(X_2) \ge 0$

Describe convex cone via linear inequalities

Inequalities for Σ_n : *information inequalities* Example: monotonicity $H(X_1X_2) - H(X_2) \ge 0$ Inequalities for Γ_n : *quantum information inequalities*

Describe convex cone via linear inequalities

Inequalities for Σ_n : information inequalities

Example: monotonicity $H(X_1X_2) - H(X_2) \ge 0$

Inequalities for Γ_n : quantum information inequalities

Example: weak monotonicity $S(\rho_{12}) + S(\rho_{13}) - S(\rho_2) - S(\rho_3) \ge 0$

Describe convex cone via linear inequalities

Inequalities for Σ_n : *information inequalities*

Example: monotonicity $H(X_1X_2) - H(X_2) \ge 0$

Inequalities for Γ_n : quantum information inequalities

Example: weak monotonicity $S(
ho_{12}) + S(
ho_{13}) - S(
ho_2) - S(
ho_3) \ge 0$

known (quantum) information inequalities provide outer approximation of entropy cones

• DAG G = (V, E)

- DAG G = (V, E)
- Sink nodes $s \in V$: Hilbert space \mathcal{H}_s

- DAG G = (V, E)
- Sink nodes $s \in V$: Hilbert space \mathcal{H}_s
- Nodes $v \in V$ with children: Hilbert space

$$\mathcal{H}_{v} = \bigotimes_{\substack{w \in V \\ (v,w) \in E}} \mathcal{H}_{v,w}$$

• DAG G = (V, E)

- ▶ Sink nodes $s \in V$: Hilbert space \mathcal{H}_s
- ▶ Nodes $v \in V$ with children: Hilbert space

$$\mathcal{H}_{v} = \bigotimes_{\substack{w \in V \\ (v,w) \in E}} \mathcal{H}_{v,w}$$

$$\mathcal{H} = \bigotimes_{\mathbf{v} \in \mathbf{V}} \mathcal{H}_{\mathbf{v}}$$

- DAG G = (V, E)
- ▶ Sink nodes $s \in V$: Hilbert space \mathcal{H}_s
- ▶ Nodes $v \in V$ with children: Hilbert space

$$\mathcal{H}_{v} = \bigotimes_{\substack{w \in V \\ (v,w) \in E}} \mathcal{H}_{v,w}$$

$$\mathcal{H} = \bigotimes_{v \in V} \mathcal{H}_v$$

Parent Hilbert space

$$H_{\mathrm{pa}(v)} = \bigotimes_{\substack{w \in V \\ (w,v) \in E}} \mathcal{H}_{w,v}$$

Initial product state $\rho_0 = \bigotimes_q \rho_q$ on Hilbert spaces of source nodes q

- Initial product state $\rho_0 = \bigotimes_q \rho_q$ on Hilbert spaces of source nodes q
- CPTP maps Φ_v for each non-source node:

$$\Phi_{v}: L\left(\mathcal{H}_{\mathrm{pa}(v)}\right) \to L(\mathcal{H}_{v})$$

- Initial product state $\rho_0 = \bigotimes_q \rho_q$ on Hilbert spaces of source nodes q
- CPTP maps Φ_v for each non-source node:

$$\Phi_{v}: L\left(\mathcal{H}_{\mathrm{pa}(v)}\right) \to L(\mathcal{H}_{v})$$

$$\rho_{\rm v} = \Phi_{\rm v} \rho_{\rm pa(v)}$$

- Initial product state $\rho_0 = \bigotimes_q \rho_q$ on Hilbert spaces of source nodes q
- CPTP maps Φ_v for each non-source node:

$$\Phi_{v}: L\left(\mathcal{H}_{\mathrm{pa}(v)}\right) \to L(\mathcal{H}_{v})$$

$$\rho_{\mathbf{v}} = \Phi_{\mathbf{v}} \rho_{\mathrm{pa}(\mathbf{v})}$$

[!] no global state

- Initial product state $\rho_0 = \bigotimes_q \rho_q$ on Hilbert spaces of source nodes q
- CPTP maps Φ_v for each non-source node:

$$\Phi_{v}: L\left(\mathcal{H}_{\mathrm{pa}(v)}\right) \to L(\mathcal{H}_{v})$$

$$\rho_{\mathbf{v}} = \Phi_{\mathbf{v}} \rho_{\mathrm{pa}(\mathbf{v})}$$

[!] no global state

• want classical nodes: pick the right Φ_v

Example

 $\blacktriangleright \ \mathcal{H} = \mathcal{H}_{1,2} \otimes \mathcal{H}_{1,3} \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$

Example

$$\blacktriangleright \ \mathcal{H} = \mathcal{H}_{1,2} \otimes \mathcal{H}_{1,3} \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$$

States on the coexisting subsets of systems:

$$\begin{array}{rcl}
\rho_{(1,2),(1,3)} &=& \rho_{0} \\
\rho_{(1,3),2} &=& (\Phi_{2} \otimes \mathbb{1}) \rho_{0} \\
\rho_{(1,2),3} &=& (\mathbb{1} \otimes \Phi_{3}) \rho_{0} \\
\rho_{2,3} &=& (\Phi_{2} \otimes \Phi_{3}) \rho_{0}
\end{array}$$

Look at entropy cone of states constructed like this

Look at entropy cone of states constructed like this

➤ H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks

- Look at entropy cone of states constructed like this
- ➤ H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks
- Formally: Entropy vector $v \in \mathbb{R}^{2^n}$

- Look at entropy cone of states constructed like this
- ► H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks
- ► Formally: Entropy vector $v \in \mathbb{R}^{2^n}$
- $v_I = S(\rho_I)$ if the state ρ_I exists

- Look at entropy cone of states constructed like this
- ➤ H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks
- ► Formally: Entropy vector $v \in \mathbb{R}^{2^n}$
- $v_I = S(\rho_I)$ if the state ρ_I exists
- v_I arbitrary if ρ_I doesn't exist

- Look at entropy cone of states constructed like this
- ➤ H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks
- ► Formally: Entropy vector $v \in \mathbb{R}^{2^n}$
- $v_I = S(\rho_I)$ if the state ρ_I exists
- v_I arbitrary if ρ_I doesn't exist
- ▶ for each J ⊂ E ∪ V_s of coexisting systems: quantum entropy cone

- Look at entropy cone of states constructed like this
- ➤ H is a tensor product of n = |E| + |V_s| hilbert spaces, V_s: Set of sinks
- ► Formally: Entropy vector $v \in \mathbb{R}^{2^n}$
- $v_I = S(\rho_I)$ if the state ρ_I exists
- v_I arbitrary if ρ_I doesn't exist
- ▶ for each J ⊂ E ∪ V_s of coexisting systems: quantum entropy cone
- extra monotonicities for classical systems

Data processing inequality

replace conditional independence relations?
replace conditional independence relations?

 \rightarrow Data processing inequality: For a CPTP map $\Phi : \mathcal{H}_A \rightarrow \mathcal{H}_B$

 $I(A: C|D) \ge I(B: C|D)$

for any other systems C and D.

replace conditional independence relations?

ightarrow Data processing inequality: For a CPTP map $\Phi : \mathcal{H}_A
ightarrow \mathcal{H}_B$ $I(A : C|D) \ge I(B : C|D)$

for any other systems C and D.

relates entropies of noncoexisting systems

Again, only some systems are observed

- Again, only some systems are observed
- Example:

- Again, only some systems are observed
- ► Example:

- Again, only some systems are observed
- ► Example:

- Again, only some systems are observed
- ► Example:

most interesting marginal scenario: {A, B, C} & assume these nodes classical

- Again, only some systems are observed
- Example:

- most interesting marginal scenario: {A, B, C} & assume these nodes classical
- entropy cone: project onto observable entropies

- Again, only some systems are observed
- Example:

- most interesting marginal scenario: {A, B, C} & assume these nodes classical
- entropy cone: project onto observable entropies
- \implies take all implied inequalities for obs. entropies

Application

Corresponding DAG:

Corresponding DAG:

▶ Nodes X_i , Y, M, S are classical, only the AB node is quantum

Corresponding DAG:

- ▶ Nodes X_i , Y, M, S are classical, only the AB node is quantum
- Counterfactual reformulation: $Y_i = (Y|S = i)$

Marginal scenario {X₁, Y₁}, {X₂, Y₂}, {M} yields original information causality inequality

 $I(X_1 : Y_1) + I(X_2 : Y_2) \le H(M)$

Marginal scenario {X₁, Y₁}, {X₂, Y₂}, {M} yields original information causality inequality

$$I(X_1 : Y_1) + I(X_2 : Y_2) \le H(M)$$

 \rightarrow More general marginal scenario $\{X_1, X_2, Y_1, M\}, \{X_1, X_2, Y_2, M\}:$

Marginal scenario {X₁, Y₁}, {X₂, Y₂}, {M} yields original information causality inequality

$$I(X_1 : Y_1) + I(X_2 : Y_2) \le H(M)$$

 $\rightarrow \text{ More general marginal scenario} \\ \{X_1, X_2, Y_1, M\}, \{X_1, X_2, Y_2, M\}:$

Marginal scenario {X₁, Y₁}, {X₂, Y₂}, {M} yields original information causality inequality

$$I(X_1 : Y_1) + I(X_2 : Y_2) \le H(M)$$

 \rightarrow More general marginal scenario $\{X_1, X_2, Y_1, M\}, \{X_1, X_2, Y_2, M\}:$

Strengthened information causality inequality

 $I(X_1 : Y_1, M) + I(X_2 : Y_2, M) + I(X_1 : X_2 | M) \le H(M) + I(X_1 : X_2)$

 Fourier Motzkin elimination: remove variables from inequalities

- Fourier Motzkin elimination: remove variables from inequalities
- Problem: double exponential in *number of variables*...

- Fourier Motzkin elimination: remove variables from inequalities
- Problem: double exponential in *number of variables*...
- ... i.e. triple exponential in number of nodes

- Fourier Motzkin elimination: remove variables from inequalities
- Problem: double exponential in *number of variables*...
- ... i.e. triple exponential in number of nodes
- works for small instances (triangle, IC)

- Fourier Motzkin elimination: remove variables from inequalities
- Problem: double exponential in *number of variables*...
- ... i.e. triple exponential in number of nodes
- works for small instances (triangle, IC)
- Easier: check candidate inequality

- Fourier Motzkin elimination: remove variables from inequalities
- Problem: double exponential in *number of variables*...
- ... i.e. triple exponential in number of nodes
- works for small instances (triangle, IC)
- Easier: check candidate inequality
- formulation as LP:

minimize
$$\sum_{I \subset \{1,...,n\}} \alpha_I v_I$$
subject to SSA, WM, DPs

Summary

Summary

- Defined quantum causal structures
- Algorithm for characterization
Summary

- Defined quantum causal structures
- Algorithm for characterization
- Applications: strengthening of information causality, quantum networks

PhD positions available: Application deadline Jan. 3rd 2016 check out our website (QMath Copenhagen) Thank you for your attention!