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Answer: Causal Inference

� Rigorous mathematical way to distinguish different causal
relations

� Introduced by Pearl in the 1980s

� Necessary conditions for probability distributions to come from
more restrictive causal model

� Tools: Bayesian networks, entropies, convexity

[?] What if the underlying processes are quantum?

� Bell nonlocality etc. special cases of this
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DAGs

� Any directed acyclic graph (DAG) specifies a causal structure:

1 2 3

4 5 6

� Directed graph: G = (V ,E ) with E ⊂ V × V

� Acyclic: no cycle (causality)

� parents of v : pa(v) = {w ∈ V |(w , v) ∈ E}
� children, ancestors, descendants, non-descendants etc.
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Bayesian network

� Bayesian network: generalization of Markov chain

� distribution is product of conditional distributions

� characterization: v⊥nd(v)|pa(v)
� example: Markov chain,

X → Y → Z =⇒ Z⊥X |Y ⇔ p(x , y , z)p(y) = p(x , y)p(y , z)

� formalism requires access to joint probability distribution

=⇒ obstacle for quantum generalization

� hard algebraic equations

� easier: look at entropies
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Marginal scenario

� Only some RVs are observed

� Example:

→ Marginal scenario: {A,B ,C}
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Interlude: Entropies

� ρ ∈ S(H) mixed quantum state on H = C
d

� Von Neumann entropy

S(ρ) = −trρ log ρ

� Multipartite state ρ ∈ S(H) with H = H1 ⊗ ...⊗Hn

� ρI = tr
I c
ρ

� Von Neumann entropy vector: s(ρ) = (S(ρI ))I⊂{1,...,n} ∈ R
2n
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Entropy Cone

Set of all quantum entropy vectors:

Γn = {s(ρ)|ρ n-party quantum state}

Γn is a convex cone (Pippenger, 2003)

Classical entropy cone: Σn
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Information Inequalities

Describe convex cone via linear inequalities

Inequalities for Σn: information inequalities

Example: monotonicity H(X1X2)− H(X2) ≥ 0

Inequalities for Γn: quantum information inequalities

Example: weak monotonicity S(ρ12) + S(ρ13)− S(ρ2)− S(ρ3) ≥ 0

known (quantum) information inequalities provide outer
approximation of entropy cones
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� DAG G = (V ,E )

� Sink nodes s ∈ V : Hilbert space Hs

� Nodes v ∈ V with children: Hilbert space

Hv =
⊗

w∈V
(v ,w)∈E

Hv ,w

�

H =
⊗

v∈V
Hv

� Parent Hilbert space

Hpa(v) =
⊗

w∈V
(w ,v)∈E

Hw ,v
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Quantum Causal Structures

� Initial product state ρ0 =
⊗

q ρq on Hilbert spaces of source
nodes q

� CPTP maps Φv for each non-source node:

Φv : L
(Hpa(v)

) → L(Hv )

�

ρv = Φvρpa(v)

[!] no global state

� want classical nodes: pick the right Φv
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� H = H1,2 ⊗H1,3 ⊗H2 ⊗H3

� States on the coexisting subsets of systems:

ρ(1,2),(1,3) = ρ0

ρ(1,3),2 = (Φ2 ⊗ 1) ρ0

ρ(1,2),3 = (1⊗ Φ3) ρ0

ρ2,3 = (Φ2 ⊗ Φ3) ρ0
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The entropy cone

� Look at entropy cone of states constructed like this

� H is a tensor product of n = |E |+ |Vs | hilbert spaces, Vs : Set
of sinks

� Formally: Entropy vector v ∈ R
2n

� vI = S(ρI ) if the state ρI exists

� vI arbitrary if ρI doesn’t exist

� for each J ⊂ E ∪ Vs of coexisting systems: quantum entropy
cone

� extra monotonicities for classical systems
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Data processing inequality

� replace conditional independence relations?

→ Data processing inequality: For a CPTP map Φ : HA → HB

I (A : C |D) ≥ I (B : C |D)

for any other systems C and D.

� relates entropies of noncoexisting systems
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Marginal Scenario

� Again, only some systems are observed

� Example:

� most interesting marginal scenario: {A,B ,C} & assume these
nodes classical

� entropy cone: project onto observable entropies

⇐⇒ take all implied inequalities for obs. entropies
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Information Causality

� Corresponding DAG:

X1 S

X2

YM AB

� Nodes Xi , Y ,M, S are classical, only the AB node is quantum

� Counterfactual reformulation: Yi = (Y |S = i)
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Information Causality

� Marginal scenario {X1,Y1}, {X2,Y2}, {M} yields original
information causality inequality

I (X1 : Y1) + I (X2 : Y2) ≤ H(M)

→ More general marginal scenario
{X1,X2,Y1,M}, {X1,X2,Y2,M}:

Strengthened information causality inequality

I (X1 : Y1,M)+I (X2 : Y2,M)+I (X1 : X2|M) ≤ H(M)+I (X1 : X2)
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Computational Techniques

� Fourier Motzkin elimination: remove variables from
inequalities

� Problem: double exponential in number of variables...

... i.e. triple exponential in number of nodes

� works for small instances (triangle, IC)

� Easier: check candidate inequality

� formulation as LP:

minimize
∑

I⊂{1,...,n}
αI vI

subject to SSA,WM,DPs
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Summary

� Defined quantum causal structures

� Algorithm for characterization

� Applications: strengthening of information causality, quantum
networks
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