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OUTLINE

 Gain information about observable A via some
measurement, with some noise or error.

Q. What is the cost? — in terms of losing information
about observable B, i.e., the disturbance to B?

* Noise—disturbance operator approach
— Testable relations
— But not about “information” (e.g., label dependent)

 Information-theoretic approach

— All'about “information” (and allows for error
correction).

— Recent neutron experiment



Noise vs disturbance: y-ray microscope
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Heisenberg 1927:
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o|f use photon of wavelength A to measure the position of an
electron, then the error will be on the order of

gaQ) ~ A
From the Compton effect, the momentum of the electron will
suffer a “discontinuous change” on the order of

n(P) ~p,=h/A.
*Hence,
&Q) n(P) ~h.

*How can this tradeoff be made rigorous — and generalised?


http://upload.wikimedia.org/wikipedia/commons/e/e3/Compton-scattering.svg

Noise and disturbance operators

System Measurement Disturbed system
(A,B,C,...) Interaction (A’,B’,C’,...)

Pointer observable 1
(estimates A)

Noise operator: M-A
RMS noise: efA)? =< (M—-A)P>,

Disturbance operator: B'—B
RMS disturbance: n,(B)?:=<(B"=B)*>,

2222 ¢ (A) 1,(B) > %|<[AB]>)| 7777



Noise-disturbance-predictability relations

e (Ozawa (2003):
e,(A) 1,(B)+&,(A) A (B) + A (A) ,(B) > %] < [AB] > |

« Generalised and tested extensively

[e.g., Hall 2004, Hasegawa et al. 2012&2013; Rozema et al. 2012; Weston
et al. 2013; Branciard 2013&2014; Ringbauer et al. 2014; Edamatsu et al.
2014; Ozawa 2014; many arXiv eprints]

« Not a pure noise-disturbance tradeoff, a la Heisenberg

* ¢£,(A)can underestimate, 17,(B) can overestimate

» Label-dependent — not about “information” lost or gained



Some controversy....

« “you really don't want to confuse this freaky maverick paper
with Heisenberg's actual discoveries”

e “Itisshown that their alleged proof includes a loophole™

o “...haswritten an attack on our approach. This was worded
so aggressively, and was so low on scientific quality, that it
would seem to be more of an embarrassment to the author
than an argument requiring an answer.”

Q. Is there an alternative approach to characterising a tradeoff
between noise and disturbance, for a given apparatus M?



Information-theoretic noise

Randomly chosen Measurement Disturbed system
eigenstate interaction
of A, |a>

Estimate | «____ pointer observable
aest =f(m) M=m

 How well can one guess the input, A=a, from the output,
M=m"?
« The correlation is described by p(a,m) = d?* <a[M, [a>

* The noise Is defined to be the amount of information
lost via an imperfect correlation:

N[A,M] :=H(A[M) (conditional entropy)



Information-theoretic disturbance

Randomly chosen
eigenstate
of B, |b>

Measurement
interaction

Pointer observable
M=m

Disturbed
eigenstate

Measure
T

Estimate
best = b’

 How well can one estimate the input, B=b, from the

output, B’=b"?



Information-theoretic disturbance

Randomly chosen Measurement Measure
eigenstate interaction Error B=b’
of B, [b> correction
operation
E

Pointer observable
M=m

Estimate
est — b’

* How well can one estimate the input, B=b, from the
output, B’=b"?
 Allow for arbitrary error correction, E.

o The disturbance is defined to be the information
irreversibly lost due to imperfect correlation:

D[B,M] :=infz Hg(B|B’)




Noise-disturbance relation

o Can prove that [Buscemi et al. PRL 112 050410 2014].

N[AM]+D[B,M]=> —logc

* Here c denotes the maximum overlap of the
eigenstates of A and B, I.e.,

c:=max,, |<alb>|? < 1.

* The relation is label-independent and state-
Independent.



Qubit example

* For spin-1/2 observables A=c, and B=0;,.
N[A,M] + D[B,M] = log 2.

e Thus, If a measurement device gives perfect
iInformation about o, (no noise) , then it destroys all
information about o, (maximum disturbance).

« Neutron experiment has been recently performed in
Vienna, exploring the qubit case



Noise and disturbance with neutrons

Prepare
eigenstates of | |
A=c,and B=g,
Measure
M=oc.m

Make error
correction,

based on
outcome u=#1

Measure B

A2:B = g,
ERROR CORRECTION

Calculate N[A,M. . OPERATION &
and D[B, M], as P” < APPARATUS 1: State: | + pm) — | + ub)
the 4 fa;;?‘ﬂHEPAHATIDN:I +2), |+y)

measurement :

M 1s varied



Experimental results

e Blue curve: no DBM]
error correction 1
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Joint measurement relation

* For any measurement device which gives joint
estimates of observables A and B, one has the noise-
tradeoff relation [Buscemi et al. PRL 112 050410 2014]:

N[A,M] + N[B,M] > —log c .

e Thus, no measurement device can gain perfect
information about both observables, If c<1.

 This result implies the noise-disturbance relation



Heisenberg-type relations?

* One can compare any estimate a, =f(m) with the input
value A=q, in the “noise” experiment.

* One can compare the measurement result B’=b’, with the
Input value B=b, In the “disturbance” experiment.

 Define corresponding mean square errors for the noise and
disturbance:

Vi(A) =2, pla,m) [a,, — al?
Vo(B) = 3, p(b,b’) [b’ - b]2

(NB: Busch, Lahti and Werner [PRL 111 160405 2013] replace
averages over a and b by maximums over a and b)




Example: position and momentum

e For A=Q and B=P (in the limit where position and
momentum eigenstates are input) [Buscemi et al. PRL 112 050410]:

V,(Q) V,(P) > /4.

 Stronger than a recent result by Busch, Lahti and Werner
[PRL 111 (2013)160405 (2013)] (which uses maximum
rather than mean-square errors).

* Looks nice, but is only of theoretical interest:
V, (Q) — oo for any position-measurement device having
a finite measurement range (similarly for BLW’s
“maximum error”).



Conclusions

Information-theoretic form of Heisenberg’s noise-
disturbance concept:

N[A,M] + D[B,M] > —log c.

A measurement device can gain information about an
observable A only by destroying information about an
Incompatible observable B.

Independent of how eigenvalues and measurement
outcomes are labelled — only information matters.

Does not depend on the predictability of outcomes - e.g,
on Ap(A) or Ap(B).

Depends only on the measurement device, not on a
particular state (is there a state-dependent form?)



State-dependent information-theoretic
joint-measurement uncertainty relation

e |f a system and probe interact, to give some

joint state p, then for any system observables
A and B, and probe observable M, one has the
information exclusion relation [Hall, PRA 55, 100,
1997]

H (A:M) + H ,(B:M) < log d°c

 For position and momentum, one obtains
H.(Q:M)+H,(P:M)<log [A4,Q A,P/(/2)].



ldea behind proof of N(A)+N(B)>-log c

Measure Measurement

interaction

Eigenvalue Pointer observable
A=a Or B=b M=m

 Measure A or B precisely, on one component of a
suitable maximally-entangled state

« Carry out the measurement interaction of interest
on the other component

e Estimate A=a__. and B=b__. from M=m

est est
e Use suitable entropic uncertainty relation for
HA[M) + HyB|M)
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