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Phase transition

Phase transition (PT): System driven by control parameters
changes from one state of matter to another

The classification of PT:
1 CPT: Abrupt change of F by changing T−relevant

parameters
2 QPT: Abrupt change of Eg of a zero-T Q. many-body

system, e.g. abrupt opening of a bandgap

Difficulty: The parameters are hard to change once the
material sample of the system is fabricated

Do we have more efficient way to manipulate energy spectrum
than changing parameters?
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Periodic driving: A useful way

to control system

Archimedes’ screw

EIT: periodic interaction between the control laser
and atoms. Mücke, et al., Nat. 465, 755 (2010)

offers high controllability of Q. system because time, as an extra
dimension, is added to the system
Can we manipulate the energy spectrum of Q. many-body system
by periodic driving?
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What governs the physics of a periodic system?

Static sys. Periodic sys.

Ĥ|ϕn〉 = En|ϕn〉 [Ĥ(t)− i~∂t]|φn(t)〉 = εn|φn(t)〉
|φn(t)〉 = |φn(t+ T )

|Ψ(t)〉 =
∑

n cne
−iEnt

~ |ϕn〉 |Ψ(t)〉 =
∑

n cne
−iεnt

~ |φn(t)〉
cn = 〈ϕn|Ψ(0)〉 cn = 〈φn(0)|Ψ(0)〉

1 εn plays the same role as the eigenenergy in the static
system. Quasienergy

2 |φn(t)〉 plays the same role as the Ĥ-eigenstate in the static
system. Quasi-stationary state

[
Ĥ(t)− i~∂t

]
|φn(t)〉 = εn|φn(t)〉 ⇔ ÛT |φn(0)〉 = e

−i
~ εnT |φn(0)〉

ÛT = T̂ e− i
~
∫ T
0 Ĥ(t)dt ≡ e

−i
~ ĤeffT , Ĥeff|φn(0)〉 = εn|φn(0)〉

The quasi-stationary-state properties of Ĥ(t) are carried by Ĥeff
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Non-equilibrium QPT induced by periodic driving

is characterized by the abrupt opening of a bandgap in
quasi-energy spectrum by the driving parameters

The energy of the system is in non-conserving:
Non-equilibrium

A time-dependent analogy of QPT in periodically driven
system

The versatility of driving scheme enable us to

1 realize Q. phases not accessible for the static system in the
same setting

2 explore novel Q. phases with no analogy with its static system
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Decoherence: A basic issue of Q. physics

The loss of the phase ordering between the components of a
Q. superposition

The reason why Q. behaviors are different from classical one

|Ψ〉 → |00 · · · 0〉 From W. H. Zurek (1991)

1 The border between Q. and classical worlds
2 The quantum-classical transition of a physical systems
3 The paradoxes when Q. laws are applied to macroscopic

systems
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Decoherence: Renewed interest in Q. engineering
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FIGURE 7-1  Two of the profound societal revolutions of the 20th century are combining in the 21st 
century to create a new science with incredible technological implications.

tion that is inconceivable in our macroscopic world. These ideas are not just arcane 
academic curiosities, however, but provide the physical basis for chemistry, semi-
conductor electronics, x rays, and other ubiquitous elements of modern living.

Classical information science describes the storage, transmission, and manipu-
lation of information that is encoded as bits—the ones and zeros of the binary 
number system. Computers, the Internet, and video games are all products of bit-
based information science, and one reason these modern marvels work so well is 
the nearly complete absence of errors or ambiguities. Bit-based information must 
be virtually error-free, or else the exponential growth in complexity and speed of 
computing devices would eventually lead to chaos. Thus, the fundamental ambigu-
ity of quantum mechanics and the fundamental certainty of information science 
seem totally at odds.

Quantum information changes all of that. A new scientific and technological 
revolution is emerging in the 21st century out of the new and intimate connection 
between quantum mechanics and information science. The processing of quantum 
information requires a physical system that obeys the laws of quantum mechanics. 
Quantum physics is prevalent in very small, isolated systems such as individual 
atoms and photons. Thus, AMO physical systems and techniques have taken the 
major role in the development of quantum information science, just as in the 20th 
century they were in the vanguard of the development of quantum mechanics. 
The new quantum information science promises to be as radical in its effect on 
human society as quantum physics and information science were individually in 
the last century. In the next 10 years, it will be one of the major driving forces in 
AMO physics.

Mechanical analog to
Schrödinger’s cat. From Cho,

Science 327, 516 (2010).

Great technique innovations from basic physical principle

The realization of QE is bounded by decoherence
QE relies on the possibility to manipulate the state of a great number of qubits in a

controlled way and to maintain coherence over a long time

How to control decoherence is a crucial issue in QE
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Decoherence control

Q. error correction for one qubit-flip error

3 Quantum feedback control

3.1 A general description

As it was mentioned before, feedback control is an ubiquitous and powerful technique for

classical systems because - in principle - it is possible to acquire all the information about the

state of a system with certainty by using sufficiently precise measurements. However, there

are two fundamental features of quantum systems which have to be taken into account in

the quantum case. The first one is that non-orthogonal states cannot be distinguished with

certainty. The second one is that any measurement that gains information about a system

induces an uncontrollable noise to it. Therefore, one must carefully design the control scheme

to balance the trade-off between information gain and disturbance.

System
(quantum)

noise from
environment

Actuators

Measurement
apparatus

measurement &
backactioncoherent

interaction

feedback

input output(both classical)

Figure 1: A schematic diagram of quantum
feedback control, reproduced from [43].

QFC can be split up into several sub-

categories depending on the type of mea-

surement we use or the way we treat the

controller. The two main approaches to in-

formation acquistion are strong (projective)

measurements and Continuous weak mea-

surements. The controller can be considered

as a classical object - that is, the gained in-

formation is classical - or quantum system

which processes -and feeds back - quantum

information [33]. If we assume, that the con-

troller is memoryless and we do not consider

any time delays (so e.g. we can immedi-

ately feed back the information) then it is

Markovian feedback control and the result-

ing evolution of the system is described by

the Markovian master equation (8) derived

in Section 2.2. In contrast, we can devide

the whole control process into two steps: first, we estimate some of the dynamical variables

of the state and use the estimated state to design the control. It is usually desirable to obtain

the measurement record Continuously, therefore this technique requires real-time solution

of stochastic differential equations and fast measurements. The dynamical equation of the

evolution is non-Markovian. Determining the conditioned state of the quantum system from

classical measurement results is a quantum version of Bayesian reasoning. Classical Bayesian

13

Feedback control. Tóth, arXiv:1210.0360

Dynamical decoupling. de Lange, Wang, Ristè,
Dobrovitski, Hanson, Science 330, 60 (2010) FIG. 4: (a) Schematic of a waveguide array for the observation of the optical Zeno effect. (b)

Numerically-computed behavior of mode amplitude |c1| trapped in waveguide |1〉 (solid curve)

versus propagation distance in a L = 20-mm-long array for τ = 4 mm, a0 = 16 µm, and a = 12 µm.

The dashed curve is the behavior corresponding to Fig.3(a). (c) Grey-scale discrete diffraction

pattern along the array.

of dephasing or many-body effects, making waveguide-based optical structures an ideal labo-

ratory for the observation of several analogs of coherent quantum dynamical effects (see, e.g.

[22]). Beautiful optical analogs of Bloch oscillations [14, 18, 22], Landau-Zener tunneling

[22], adiabatic stabilization of atoms in strong fields [24], and coherent control of quantum

tunneling [25], have been indeed reported in recent optical experiments.

Light propagation in the waveguide array is described by Eq.(2) in which the temporal vari-

able t is replaced by the spatial propagation coordinate z, h̄ = λ/(2π) is the reduced wave-

length of photons, m = ns is the refractive index of the array substrate, V (x) ≃ ns − n(x),

and n(x) is the array refractive index profile (see, e.g., [24, 25]). As an example, Fig.3

shows the discrete diffraction patterns and corresponding behavior of light trapped in waveg-

uide |1〉 as obtained by a numerical analysis of Eq.(2) using a standard beam propagation

method with absorbing boundary conditions [26]; initial condition corresponds to excitation

of waveguide |1〉 in its fundamental mode, i.e. ψ(x, 0) = ϕ(x). The refractive index profile

of the semi-infinite array used in the simulations is plotted in Fig.1(c) for parameter values

8

Zeno effect. Longhi, PRL 97, 110402 (2006)
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Bound-state induced decoherence suppression

Bound stateµA mid-gap eigen state of the system-reservoir
system: |ϕ1〉 = c0 |+, {0k}〉+

∑
k ck |−, 1k〉,

ω0c0 +
∑

k gkck = E1c0

g∗kc0 + ωkck = E1ck

}
⇒y(E1) ≡ ω0 −

∫ ∞

0

J(ω)

ω − E1
dω = E1

Tong, An, Luo, Oh, PRA 81, 052330 (2010); PRB 84, 174301 (2011)

When is bound state formed?

y(0)>0

-1.0 -0.5 0.5 1.0
E1

-2

-1

1

2 y(0)<0

-1.0 -0.5 0.5 1.0
E1

-4

-2

2

For Ohmic-like spectral density, the bound state is
formed whenµµµy(0) < 0⇒ ω0 − ηωcγ(s) < 0
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Consequence (I): Anomalous decoherence

For J(ω) = η ω
3

ω2
0
e−ω/ωc , the bound state is formed

whenµω0 − 2η ω
3
c

ω2
0
< 0

The evolution of quantum coherence c(t) = |c0(t)|. ωc
ω0

= 1.0 in upper panel (the bound state is formed

when η > 0.5) and η = 0.08 in the lower panel (the bound state is formed when ωc > 1.84ω0)
Tong, An, Luo, Oh, J. Phys. B: At. Mol. Opt. Phys. 43, 095505 (2010)

AN J.-H. (S�õ) (LZU) Non-equilibrium QPT December 15, 2014 18 / 55



Consequence (II): Quantum phase transition

J(ω) = 2παω1−s
c ωsΘ(ωc−ω), the bound state is formedµα > 2s∆

ωc
.

Ground-state energy and its first-derivative

Ground-state fidelity and entanglement
From Liu, An, Chen, Tong, Luo, Oh, Phy. Rev. A 87, 052139 (2013)
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Consequence (III): Entanglement preservation

BM result

T. Yu & J. Eberly, PRL 93, 140404 (2004)

NM result

Tong, An, Luo, Oh, Phys. Rev. A 81, 052330
(2010)
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Consequence (IV): Quantum speed limit &

non-Markovianity

ΤQSL Non�Markovianity

0.00 0.05 0.10 0.15 0.20

Η

N
&
Τ Q

SL

Ohmic spectrum. The bound state is formed when η > 0.1. Liu, Yang, An, Luo (2014)

Non-Markovianity: Breuer, Laine, and Piilo, Phys. Rev. Lett. 103, 210401 (2009)

Quantum speed limit time: Deffner and Lutz, Phys. Rev. Lett. 111, 010402 (2013)
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Motivation

The decoherence of the system connects tightly with the
properties of the energy spectrum of the total system

Can we manipulate the energy spectrum of the total system
forming the bound state via periodic driving so that the
decoherence of the open system can be suppressed?
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System and scheme

Decoherence control by periodic driving

Chong Chen,1 Jun-Hong An,1, 2, ∗ Jiangbin Gong,3 Hong-Gang Luo,1 and C. H. Oh2, †

1Center for Interdisciplinary Studies, Lanzhou University, Lanzhou 730000, China
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

3Department of Physics and Centre for Computational Science and Engineering,
National University of Singapore, Singapore 117542, Singapore

Given that periodic driving is becoming one highly controllable and versatile tool in quantum
control, we propose a periodic driving protocol to protect an open two-level system from decoherence.
Via studying the modulated dynamics of the periodically driven two-level system interacting with
a structured reservoir constructed by 2D photonic crystal, we reveal that the decoherence of the
TLS can be inhibited whenever the driving is tailored such that a discrete bound state is formed in
Floquet quasi-energy spectrum. An non-equilibrium phase diagram reflected by the Floqeut quasi-
energy is obtained. It can act as a map on how to devise the driving to beat the decoherence in
practice.

PACS numbers:

Decoherence control aiming to affects system-bath dy-
namics on the time scale that are much little than sys-
tem coherent time [1, 2] has attracted much attention
in particle implementation. In general there mainly are
three classes method to control the decoherence dynamic-
s. The first is to engineer the interaction of system-bath
[3], and it has been come true in waveguide arrays in
experiments [4]. The second is to use the quantum in-
terference to realize the dynamics control such as dark
state [5]. The third way is change the dynamics through
the repeat measure the quantum system and this always
called Quantum Zeno effect(QZE) [6–8].

To the QZE, there exist a long dispute about whether
the wave function collapse is necessary. It is know that
the origin QZE is established on the positive project mea-
surement, however some article suggest a method to re-
alize the QZE without the invoking the wave function
collapse[9–12] which calling dynamics QZE. The dynam-
ics QZE is to realize control the unstable system decay
rate through continual interact with an external field.
And it is realized in experience by Itano et al.[11]. Fol-
lowed by the experiment some articles argue that there
are not happen wave function collapse [13, 14] and in
strictly it can not be called QZE.

In this article we investigate the modulated dynam-
ics of one nitrogen vacancy(NVC)[15] center in dia-
mond embeded in an 1D coupled-resonators waveg-
uide(CRW) which constructed by 2D photonic crystal
cavities(PCC)[16, 17]. As the long ground state spin co-
herence time and the operability, NVC is the ideal ma-
terials to investigate the non-Markovian effect and can
be used to realize the quantum information process. The
model of coupled-resonators waveguide(CRW) has been
widely explored as providing an special environment. 2D
PCC is an ideal vector as high Q factor and can strong-
ly confine the photons to realize CRW which has been
realized in experiments [18, 19].

Basis the above system, we want to say that it is not

Ω
0

NVC

Control

τ T 2T 3T 4T t

Ω
0

+

-

FIG. 1: Schematic configuration for an NV-center embeding
into an One-dimension CRW which formed by 2D PPC. The
NVC is simply mapping to a two-level system(TLS). The TL-
S’s level splitting is periodic modulated by external field with
square wave method.

proper to simply classify the unstable system’s modu-
lated dynamics to dynamics QZE. With periodic chang-
ing the transpiration frequency of NVC by square wave
mehthod , we found that even the modulated dynam-
ics can shows the QZE and Anti-QZE in some special
coefficient area, however the modulated dynamics shows
more complex dynamics behavior which not obeying the
QZE. Use the Floquet method we found that there ex-
ist an discrete-continuum band state which can lead to
totally inhibit the decoherence dynamics of unstable sys-
tem and there has a very well corresponding between the
modulated dynamics and Floquet spectral.

Consider a periodically driven quantum system cou-
pled to an environment with the whole system being
governed by Hamiltonian Ĥ(t) = Ĥ(t + T ). We are
concerned with the active role played by the driving in
suppressing the decoherence effect induced by the en-

A periodically driven two-level system interacting
with a coupled cavity array constructed by photonic

crystal

ω0(t) =

{
ωc, t ∈ [mT,mT + τ ]

ωc + ∆, t ∈ [mT + τ, (m+ 1)T ]

Ĥ(t) = ω0(t)σ̂+σ̂− + ωc

N−1∑

j=0

b̂†j b̂j + (gσ̂+b̂0 + ξ
N−2∑

j=0

b̂†j+1b̂j + h.c.)

= ω0(t)σ̂+σ̂− +
∑

k

[ωkâ
†
kâk +

g√
N

(σ̂+âk + h.c.)]

An environment with finite band width ωk = ωc + ξ cos kx0

AN J.-H. (S�õ) (LZU) Non-equilibrium QPT December 15, 2014 24 / 55



Decoherence dynamics

Objective: Prevent the TLS from spontaneous emission
Initial state: |Ψ(0)〉 = |+, {0k}〉

|Ψ(t)〉 = c(t)|+, {0k}〉+
∑

k dk(t)|−, 1k〉, where

ċ(t) + iω0(t)c(t) +

∫ t

0

f(t− τ)c(τ)dτ = 0, (1)

with f(t) =
∑

k g
2e−iωkt/N .

2

vironment on certain system operator expectation, e.g.
O(t) = ⟨Ψ(t)|Ô|Ψ(t)⟩ with |Ψ(t)⟩ being the state of the
whole system. According to Floquet theory, the peri-
odic system has a complete set of states e−iεαt|uα(t)⟩,
where |uα(t)⟩ = |uα(t + T )⟩ called as the Floquet state
and εi called as the quasienergy can be determined by
[Ĥ(t)− i~ ∂

∂t ]|uα(t)⟩ = εα|uα(t)⟩. Consequently, we have

O(t) =
∑

α,β

c∗αcβe
−i(εβ−εα)t⟨uα(t)|Ô|uβ(t)⟩, (1)

where ci = ⟨ui(0)|Ψ(0)⟩. It means that εα and |uα(t)⟩
play the same role in periodic system as eigenenergies
and their eigenstates do in static system. In the contin-
uous limit of the environmental degrees of freedom, the
Floquet spectrum is generally a continuum. Thus O(t)
approaches zero asymptotically due to the out-of-phase
interference in Eq. (1) and we get negative result on sup-
pressing decoherence by periodic driving. However, if a
discrete eigenmode, which we called as Floquet bound
state, can be formed out of the continuous band, the de-
cay to zero of O(t) due to the decoherence effect can be
inhibited.

Specifically, we study a periodically driven two-level
system (TLS) interacting with a coupled cavity ar-
ray. The Hamiltonian reads Ĥ(t) = ω0(t)σ̂+σ̂− +
ωc
∑N−1

j=0 b̂†j b̂j + (gσ̂+b̂0 + ξ
∑N−2

j=0 b̂†j+1b̂j + h.c.), where
σ̂+ (σ̂−) and b̂†j (b̂j) are, respectively, the raising (lower-
ing) operators of the TLS and the identical cavity fields,
g is the coupling strength between the TLS with mod-
ulated transition frequency ω0(t) and the zeroth cavity
field with frequency ωc, and ξ is the hopping rate of the
photon between the two neighbour cavities. A Fourier
transform b̂j =

∑
k âke

ikjx0 can recast Ĥ into

Ĥ(t) = ω0(t)σ̂+σ̂− +
∑

k

[ωkâ†kâk + g√
N

(σ̂+âk + h.c.)],

(2)
where â†k and âk act as the modes of a structured reservoir
with finite band width ωk = ωc + ξ cos kx0. Under the
periodic boundary condition of the cavity array, we have
k = 2πn/(Nx0), (n = 0, · · · , N − 1). The frequency of
the TLS is driven periodically as

ω0(t) =
{
ωc, t ∈ [mT,mT + τ ]
ωc + ∆, t ∈ [mT + τ, (m + 1)T ]

, (3)

where ∆ denotes modulation amplitude.
For the initial state of total system |Ψ(0)⟩ = |+, {0k}⟩,

the decoherence dynamics of the TLS can be deter-
mined exactly by expanding the time-dependent state as
|Ψ(t)⟩ = c(t)|+, {0k}⟩ +

∑
k dk(t)|−, 1k⟩, where |±⟩ are

the excited and ground states of the TLS, |{0k}⟩ denotes
that all the modes of reservoir are in the vacuum states,
|1k⟩ denote the reservoir state containing one photon only
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FIG. 2: (Color online) The Floquet spectrum (a) and the
corresponding dynamics of the TLS (b) in different driving
amplitudes. The parameters are chosen as g = 0.05ωc, ξ =
0.4ωc, N = 1000, T = 3.0ω−1

c , and τ = 1.0ω−1
c .

in the k-th mode. The probability amplitude c(t) satisfies

ċ(t) + iω0(t)c(t) +
∫ t

0
f(t− τ)c(τ)dτ = 0, (4)

where f(t) =
∑

k g
2e−iωkt/N . The integro-differential

equation (4) renders the dynamics of the TLS non-
Markovian, with the memory effect of the reservoir reg-
istered in the convolution.

To evaluate the role of quasi-energies in the decoher-
ence dynamics of our driven TLS, we plot in Fig. 2 the
quasi-energy spectrum and the corresponding evolution
of excited-state population P+(t) with the change of driv-
ing amplitude ∆. In Floquet spectrum, there exists the
discrete states which is isolated form the band contin-
uum. Here we called it Floquet bound state in accord to
the bound state in static system.

With this interesting results, we would ask what are
the physical consequences of the Floquet bound state?
Can they suppress decoherence as the static cases? Our
answer to this equation is positive. As can be seen in
the figure, with the increase of modulated strength ∆,
the long time dynamics is decided by the Floquet spec-
tral as the bound states periodically appear and dis-
appear and disappear which corresponds to the deco-
herence periodically inhibited. In the region without
the bound-state, we can find that the TLS system de-
cays completely. In this case. we also find that the
decoherence in ∆ ∈ [0, 0.6]ωc is more serious than the
other two regions ∆ ∈ [2.6, 3.8]ωc and ∆ ∈ [5.7, 6.9]ωc .
While there have the similar decoherence behavior be-
tween ∆ ∈ [2.6, 3.8]ωc and ∆ ∈ [5.7, 6.9]ωc. In each re-
gion, the TLS’s decoherence behavior has an ”U” Shape
that decay rate on the edge is greater than the middle

The modulated dynamics of the TLS in different driving amplitudes. The parameters are chosen as

g = 0.05ωc, ξ = 0.4ωc, N = 1001, T = 3.0ω−1
c , and τ = 1.0ω−1

c .
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Mechanism

The Floquet quasi-energy spectrum plays essential role

e−iĤ2(T−τ)e−iĤ1τ |Φn(0)〉 = e−iĤeffT |Φn(0)〉 = e
−i
~ εnT |Φn(0)〉

2

vironment on certain system operator expectation, e.g.
O(t) = ⟨Ψ(t)|Ô|Ψ(t)⟩ with |Ψ(t)⟩ being the state of the
whole system. According to Floquet theory, the peri-
odic system has a complete set of states e−iεαt|uα(t)⟩,
where |uα(t)⟩ = |uα(t + T )⟩ called as the Floquet state
and εi called as the quasienergy can be determined by
[Ĥ(t)− i~ ∂

∂t ]|uα(t)⟩ = εα|uα(t)⟩. Consequently, we have

O(t) =
∑

α,β

c∗αcβe
−i(εβ−εα)t⟨uα(t)|Ô|uβ(t)⟩, (1)

where ci = ⟨ui(0)|Ψ(0)⟩. It means that εα and |uα(t)⟩
play the same role in periodic system as eigenenergies
and their eigenstates do in static system. In the contin-
uous limit of the environmental degrees of freedom, the
Floquet spectrum is generally a continuum. Thus O(t)
approaches zero asymptotically due to the out-of-phase
interference in Eq. (1) and we get negative result on sup-
pressing decoherence by periodic driving. However, if a
discrete eigenmode, which we called as Floquet bound
state, can be formed out of the continuous band, the de-
cay to zero of O(t) due to the decoherence effect can be
inhibited.

Specifically, we study a periodically driven two-level
system (TLS) interacting with a coupled cavity ar-
ray. The Hamiltonian reads Ĥ(t) = ω0(t)σ̂+σ̂− +
ωc
∑N−1

j=0 b̂†j b̂j + (gσ̂+b̂0 + ξ
∑N−2

j=0 b̂†j+1b̂j + h.c.), where
σ̂+ (σ̂−) and b̂†j (b̂j) are, respectively, the raising (lower-
ing) operators of the TLS and the identical cavity fields,
g is the coupling strength between the TLS with mod-
ulated transition frequency ω0(t) and the zeroth cavity
field with frequency ωc, and ξ is the hopping rate of the
photon between the two neighbour cavities. A Fourier
transform b̂j =

∑
k âke

ikjx0 can recast Ĥ into

Ĥ(t) = ω0(t)σ̂+σ̂− +
∑

k

[ωkâ†kâk + g√
N

(σ̂+âk + h.c.)],

(2)
where â†k and âk act as the modes of a structured reservoir
with finite band width ωk = ωc + ξ cos kx0. Under the
periodic boundary condition of the cavity array, we have
k = 2πn/(Nx0), (n = 0, · · · , N − 1). The frequency of
the TLS is driven periodically as

ω0(t) =
{
ωc, t ∈ [mT,mT + τ ]
ωc + ∆, t ∈ [mT + τ, (m + 1)T ]

, (3)

where ∆ denotes modulation amplitude.
For the initial state of total system |Ψ(0)⟩ = |+, {0k}⟩,

the decoherence dynamics of the TLS can be deter-
mined exactly by expanding the time-dependent state as
|Ψ(t)⟩ = c(t)|+, {0k}⟩ +

∑
k dk(t)|−, 1k⟩, where |±⟩ are

the excited and ground states of the TLS, |{0k}⟩ denotes
that all the modes of reservoir are in the vacuum states,
|1k⟩ denote the reservoir state containing one photon only
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FIG. 2: (Color online) The Floquet spectrum (a) and the
corresponding dynamics of the TLS (b) in different driving
amplitudes. The parameters are chosen as g = 0.05ωc, ξ =
0.4ωc, N = 1000, T = 3.0ω−1

c , and τ = 1.0ω−1
c .

in the k-th mode. The probability amplitude c(t) satisfies

ċ(t) + iω0(t)c(t) +
∫ t

0
f(t− τ)c(τ)dτ = 0, (4)

where f(t) =
∑

k g
2e−iωkt/N . The integro-differential

equation (4) renders the dynamics of the TLS non-
Markovian, with the memory effect of the reservoir reg-
istered in the convolution.

To evaluate the role of quasi-energies in the decoher-
ence dynamics of our driven TLS, we plot in Fig. 2 the
quasi-energy spectrum and the corresponding evolution
of excited-state population P+(t) with the change of driv-
ing amplitude ∆. In Floquet spectrum, there exists the
discrete states which is isolated form the band contin-
uum. Here we called it Floquet bound state in accord to
the bound state in static system.

With this interesting results, we would ask what are
the physical consequences of the Floquet bound state?
Can they suppress decoherence as the static cases? Our
answer to this equation is positive. As can be seen in
the figure, with the increase of modulated strength ∆,
the long time dynamics is decided by the Floquet spec-
tral as the bound states periodically appear and dis-
appear and disappear which corresponds to the deco-
herence periodically inhibited. In the region without
the bound-state, we can find that the TLS system de-
cays completely. In this case. we also find that the
decoherence in ∆ ∈ [0, 0.6]ωc is more serious than the
other two regions ∆ ∈ [2.6, 3.8]ωc and ∆ ∈ [5.7, 6.9]ωc .
While there have the similar decoherence behavior be-
tween ∆ ∈ [2.6, 3.8]ωc and ∆ ∈ [5.7, 6.9]ωc. In each re-
gion, the TLS’s decoherence behavior has an ”U” Shape
that decay rate on the edge is greater than the middle

The Floquet quasi-energy spectrum (a) and the corresponding dynamics of the TLS (b) in different
driving amplitudes.
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Other driving conditions
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FIG. 4: Flouquet spectrum(above) and the modulated dy-
namics(below) with the changing of modulated time T−τ (left
column (a)) and modulated period (right column(b)). In col-
umn (a), the modulated period T = 3ω−1

c is fixed. And we
change the period τ from 0 to T . And the modulated strength
chosen as ∆ = 6.0ωc. We can find that there exist an very
well corresponding when the boundstate exist in Floquet spec-
trum the decoherence will be suppressed. In column(b),we
change the period T from 2.0τ to 9.0τ by choosing τ = 1.0ω−1

c

and the same modulated strength. There also have the same
relation between Floquet spectrum and dynamics.

TLS’s decay rate is slowing down unlike the QZE that
the dynamics does not dependent the measurement time.
Comparing with the early case that change ∆ and T − τ ,
we can find that the TLS’s decay rate is more sensitive
to radio τ/T than the modulated strength ∆.

Finally, the non-equilibrium phase graphic is showed
in Fig.5. The different color represent the different phase
which is specificated by the bound state existence or not
in the Floquet spectrum. The light yellow region means
the phase with Floquet bound state and the light cyan
region means the phase without Floquet bound state.
According to the above analysis, the decoherence of the
NVC will decay to zero in the yellow area while there
remains some coherence in the light cyan region in the
steady state.

In summary, we have presented in this letter that the
square method modulated TLS’s decoherence dynamics.
We find that the bound state in Floquet spectrum is the
essential ingredient to freeze decoherence. The another
role of this bound state is that it can response the coher-
ence between the two part of the square method modu-
lation. From the comparing detail modulated dynamics
with the ideal Zeno dynamics, we point out that there
dose not exist an direct mapping between the modulated
dyanmcis and QZE. Only when inexistence bound state
in Floquet spectrum, the modulated dynamcis display
the similar dynamics as QZE. Finally, consider different
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FIG. 5: The non-equilibrium phase graphic of the total sys-
tem, the light yellow area means the phase that without the
Floquet bound-state, and the light cyan area represents phase
that exist the Floquet Bound-state. The free evolution time
in one cycle is fixed as τ = 1ω−1

c

FIG. 6: The evolution of entanglement for a two TLS case.
The parameters are the same as Fig. 2.

case of square method, we test the correspondence rela-
tion between decoherence’s freeze and bound state’s exist
in Floquet spectrum. We hope that this mechanism will
be useful to the explain the experience results about the
decoherence dynamics with modulation.
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Non-equilibrium phase diagram

The phases of a static system are characterized by its eigen
energies

The phases of a periodically driven system are characterized
by its Floquet quasi-energies
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umn (a), the modulated period T = 3ω−1

c is fixed. And we
change the period τ from 0 to T . And the modulated strength
chosen as ∆ = 6.0ωc. We can find that there exist an very
well corresponding when the boundstate exist in Floquet spec-
trum the decoherence will be suppressed. In column(b),we
change the period T from 2.0τ to 9.0τ by choosing τ = 1.0ω−1

c

and the same modulated strength. There also have the same
relation between Floquet spectrum and dynamics.

TLS’s decay rate is slowing down unlike the QZE that
the dynamics does not dependent the measurement time.
Comparing with the early case that change ∆ and T − τ ,
we can find that the TLS’s decay rate is more sensitive
to radio τ/T than the modulated strength ∆.

Finally, the non-equilibrium phase graphic is showed
in Fig.5. The different color represent the different phase
which is specificated by the bound state existence or not
in the Floquet spectrum. The light yellow region means
the phase with Floquet bound state and the light cyan
region means the phase without Floquet bound state.
According to the above analysis, the decoherence of the
NVC will decay to zero in the yellow area while there
remains some coherence in the light cyan region in the
steady state.

In summary, we have presented in this letter that the
square method modulated TLS’s decoherence dynamics.
We find that the bound state in Floquet spectrum is the
essential ingredient to freeze decoherence. The another
role of this bound state is that it can response the coher-
ence between the two part of the square method modu-
lation. From the comparing detail modulated dynamics
with the ideal Zeno dynamics, we point out that there
dose not exist an direct mapping between the modulated
dyanmcis and QZE. Only when inexistence bound state
in Floquet spectrum, the modulated dynamcis display
the similar dynamics as QZE. Finally, consider different
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in one cycle is fixed as τ = 1ω−1
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FIG. 6: The evolution of entanglement for a two TLS case.
The parameters are the same as Fig. 2.

case of square method, we test the correspondence rela-
tion between decoherence’s freeze and bound state’s exist
in Floquet spectrum. We hope that this mechanism will
be useful to the explain the experience results about the
decoherence dynamics with modulation.
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Conclusions

The decoherence of the TLS can be suppressed by the
periodic driving

A one-to-one correspondence between decoherence
suppression and the formation of a Floquet bound state is
established

It suggests a mechanism to beat decoherence by periodic
driving
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MF: Elementary particle

In 1937, Majorana: Neutral spin-1
2
particle can be described by a

real Dirac’s equation, and would thus be identical to its
antiparticle E. Majorana, 14, 171 (1937)

The particle at the border between matter and antimatter

I A particle of its own antiparticle:
γ̂A = (ĉ† + ĉ)/2, γ̂B = (ĉ† − ĉ)/2i⇒ γ̂j = γ̂†j

I Non-abelian statistics
Where is MF: No experimental evidence. People suspect

Neutrino Dark matter
F. Wilczek, Nature Phys. 5, 614 (2009)
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MF: Quasi-particle excitation in CMP

A superconductor system:

Particle-hole symmetry: Its eigenmode is formed by the
quasi-particle excitation:

γ̂E =
N∑

j=1

(uj,E ĉ
†
j + vj,E ĉj)

which may have
γ̂E=0 = γ̂†E=0

MF can be simulated as a zero-energy quasi-excitation inside
the vortex of a p-wave superconductor
Ivanov, PRL 86, 268 (2001)
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1D Kitaev model

Ĥ = −µ
N∑

j

ĉ†j ĉj −
1

2

N−1∑

j

(tĉ†j ĉj+1 + ∆ĉj ĉj+1 + H.c.)

=
∑

k

(ĉ†k, ĉ−k)hk · σσσ
(

ĉk
ĉ†−k

)
(Bogoliubov-de Gennes Ham.)

=
−µ
2

N∑

j

(1 + iγ̂B,j γ̂A,j)−
i

4

N−1∑

j

[(∆ + t)γ̂B,j γ̂A,j+1

+(∆− t)γ̂A,j γ̂B,j+1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)
Rep. Prog. Phys. 75 (2012) 076501 J Alicea

Figure 2. Schematic illustration of the Hamiltonian in equation (16)
when (a) µ �= 0, t = � = 0 and (b) µ = 0, t = � �= 0. In the
former limit Majoranas ‘pair up’ at the same lattice site, resulting in
a unique ground state with a gap to all excited states. In the latter,
Majoranas couple at adjacent lattice sites, leaving two ‘unpaired’
Majorana zero-modes γA,1 and γB,N at the ends of the chain.
Although there remains a bulk energy gap in this case, these end
states give rise to a two-fold ground-state degeneracy.

The second simplifying limit corresponds to µ = 0 and
t = � �= 0, where the topological phase appears. Here the
Hamiltonian is instead given by

H = −i
t

2

N−1∑
x=1

γB,xγA,x+1, (17)

which couples Majorana fermions only at adjacent lattice sites;
see figure 2(b). In terms of new ordinary fermion operators
dx = 1

2 (γA,x+1 + iγB,x), the Hamiltonian can be written as

H = t

N−1∑
x=1

(
d†

xdx − 1

2

)
. (18)

In this form it is apparent that a bulk gap remains here
too—consistent with our results with periodic boundary
conditions—since one must pay an energy t to add a dx

fermion. However, as figure 2(b) illustrates the ends of the
chain now support ‘unpaired’ zero-energy Majorana modes
γ1 ≡ γA,1 and γ2 ≡ γB,N that are explicitly absent from the
Hamiltonian in equation (17). These can be combined into an
ordinary—though highly non-local—fermion,

f = 1
2 (γ1 + iγ2), (19)

that costs zero energy and therefore produces a two-fold
ground-state degeneracy. In particular, if |0〉 is a ground state
satisfying f |0〉 = 0, then |1〉 ≡ f †|0〉 is necessarily also a
ground state (with opposite fermion parity). Note the stark
difference from conventional gapped superconductors, where
typically there exists a unique ground state with even parity so
that all electrons can form Cooper pairs.

The appearance of localized zero-energy Majorana end
states and the associated ground-state degeneracy arise because
the chain forms a topological phase while the vacuum
bordering the chain is trivial. (It may be helpful to imagine
adding extra sites to the left and right of the chain, with
µ < −t for those sites so that the strong pairing phase forms

there.) These phases cannot be smoothly connected, so the
gap necessarily closes at the chain’s boundaries. Because this
conclusion has a topological origin it is very general and does
not rely on the particular fine-tuned limit considered above,
with one caveat. In the more general situation with µ �= 0
and t �= � (but still in the topological phase) the Majorana
zero-modes γ1 and γ2 are no longer simply given by γA,1

and γB,N . Rather, their wavefunctions decay exponentially
into the bulk of the chain on a length scale ξ given by the
superconducting coherence length in the 1D system (which
diverges at the transition to the trivial phase). The overlap of
these wavefunctions results in a splitting of the degeneracy
between |0〉 and |1〉 by an energy that scales like e−L/ξ ,
where L is the length of the chain. Provided L � ξ ,
however, this splitting can easily be negligible compared with
all relevant energy scales in the problem; unless specified
otherwise we will assume that this is the case and simply refer
to the Majorana end states as zero-energy modes despite this
exponential splitting.

Finally, we comment on the importance of the fermions
being spinless in Kitaev’s toy model. This property ensures
that a single zero-energy Majorana mode resides at each end of
the chain in its topological phase. Suppose that instead spinful
fermions—initially without spin–orbit interactions—formed a
p-wave superconductor. In this case spin merely doubles the
degeneracy for every eigenstate of the Hamiltonian, so that
when |µ| < t each end supports two Majorana zero-modes,
or equivalently one ordinary fermionic zero-mode. Unless
special symmetries are present these ordinary fermionic states
will move away from zero energy upon including perturbations
such as spin–orbit coupling. (Note that even for a spinless
chain it is in principle possible for multiple nearby Majorana
modes to coexist at zero energy if certain symmetries are
present; see [56–58] for examples. Kramer’s degeneracy can
also protect pairs of Majorana end states in a particular class
of 1D superconductors with spin [59–61].)

This by no means implies that it is impossible to
experimentally realize Kitaev’s toy model and the Majorana
modes it supports with systems of electrons (which always
carry spin). Rather these considerations only imply that
a prerequisite to observing isolated Majorana zero-modes
is lifting Kramer’s degeneracy such that the electrons’ spin
degree of freedom becomes effectively ‘frozen out’. We will
discuss several ways of achieving this, as well as the required
p-wave superconductivity, in section 3.

2.2. 2D spinless p + ip superconductor

In two dimensions, the simplest system that realizes a
topological phase supporting Majorana fermions is a spinless
2D electron gas exhibiting p + ip superconductivity. We will
study the following model for such a system:

H =
∫

d2r

{
ψ†

(
− ∇2

2m
− µ

)
ψ

+
�

2

[
eiφψ(∂x + i∂y)ψ + H.c.

] }
, (20)

where ψ†(r) creates a spinless fermion with effective mass
m, µ is the chemical potential and � � 0 determines

6

MFs in 1D Kitaev model. (a): µ 6= 0 and t = ∆ = 0.
(b): µ = 0 and t = ∆ 6= 0

Rep. Prog. Phys. 75 (2012) 076501 J Alicea

For additional perspectives on this fascinating problem we
would like to refer the reader to several other reviews and
popular papers: [3–7, 12, 13, 50–52].

2. Toy models for topological superconductors
supporting Majorana modes

This section introduces toy models for topological 1D and 2D
superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic
superconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily on
the material discussed here. Indeed, our perspective is that all
of the recent experimental proposals highlighted in sections 3
and 4 are, in essence, practical realizations of these toy models.
The ideas developed here will also prove indispensable when
we discuss experimental detection schemes in section 5 and
non-Abelian statistics in section 6.

2.1. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model [9],
introduced nearly a decade ago, for a 1D spinless p-wave
superconductor. This model’s many virtues include the
fact that in this setting Majorana zero-modes appear in an
extremely simple and intuitive fashion. Following Kitaev,
we introduce operators cx describing spinless fermions that
hop on an N -site chain and exhibit long-range-ordered p-wave
superconductivity. The minimal Hamiltonian describing this
setup reads

H = −µ
∑

x

c†
xcx − 1

2

∑
x

(tc†
xcx+1 +�eiφcxcx+1 +H.c.), (2)

where µ is the chemical potential, t � 0 is the nearest-neighbor
hopping strength, � � 0 is the p-wave pairing amplitude and
φ is the corresponding superconducting phase. For simplicity
we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk
properties, which can be conveniently studied by imposing
periodic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C

†
k = [c†

k, c−k], one can write H in the standard Bogoliubov–
de Gennes form:

H = 1

2

∑
k∈BZ

C
†
kHkCk, Hk =

(
εk �̃∗

k

�̃k −εk

)
, (3)

with εk = −t cos k − µ the kinetic energy and �̃k =
−i�eiφ sin k the Fourier-transformed pairing potential. The
Hamiltonian (up to a constant) becomes simply

H =
∑
k∈BZ

Ebulk(k)a
†
kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
−k, (5)

Figure 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless
p-wave superconductor. The p-wave pairing opens a bulk gap except
at the chemical potential values µ = ±t displayed above. For
|µ| > t the system forms a non-topological strong pairing phase,
while for |µ| < t a topological weak-pairing phase emerges. The
topological invariant ν distinguishing these states can be visualized
by considering the trajectory that ĥ(k) (derived from equation (10))
sweeps on the unit sphere as k varies from 0 to π ; (b) and (c)
illustrate the two types of allowed trajectories.

uk = �̃

|�̃|

√
Ebulk + ε√
2Ebulk

, vk =
(

Ebulk − ε

�̃

)
uk, (6)

where the bulk excitation energies are given by

Ebulk(k) =
√

ε2
k + |�̃k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine tuned to
µ = t or −t , where the Fermi level respectively coincides
with the top and bottom of the conduction band as shown in
figure 1(a). The gap closure at these isolated µ values reflects
the p-wave nature of the pairing required by Pauli exclusion.
More precisely, since �̃k is an odd function of k, Cooper
pairing at k = 0 or k = ±π is prohibited, thereby leaving
the system gapless at the Fermi level when µ = ±t . Note that
the phases that appear at µ < −t and µ > t are related by a
particle–hole transformation; thus to streamline our discussion
we will hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different
in the gapped regimes with µ < −t and |µ| < t—the
former connects smoothly to the trivial vacuum (upon taking
µ → −∞) where no fermions are present, whereas in the latter
a partially filled band acquires a gap due to p-wave pairing. One
can make this distinction more quantitative following Read
and Green [10] by examining the form of the ground-state
wavefunction in each regime. Equation (4) implies that the
ground state |g.s.〉 must satisfy ak|g.s.〉 = 0 for all k so that no
quasiparticles are present. Equations (5) and (6) allow one to
explicitly write the ground state as follows:

|g.s.〉 ∝
∏

0<k<π

[1 + ϕC.p.(k)c
†
−kc

†
k]|0〉,

ϕC.p.(k) = vk

uk

=
(

Ebulk − ε

�̃

)
, (8)

4

Kinetic energy and the topological properties.
ν =

∏
k=0,π sgn(hk)
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Schemes on realization

 		0 �r; �� � 
	e�
R
r

0
dr0�0�r0�=v; (3)

with 
� � ��0; i�; �1; 0��T and 
� � ��1; 0�; �0;�i��T .
Another feature of px � ipy superconductors is the

presence of chiral edge states [3,18,19]. With time reversal
symmetry, chiral edge states cannot occur in our system.
The surface—which itself is the boundary of a three-
dimensional crystal—cannot have a boundary. By break-
ing time reversal symmetry, however, a Zeeman field can
introduce a mass term M�z into (1) and (2), which can
open an insulating gap in the surface state spectrum. By
solving (2) we find that the interface between this insulat-
ing state and the superconducting state has chiral Majorana
edge states. This could possibly be realized by depositing
superconducting and insulating magnetic materials on the
surface to form a superconductor-TI-magnet junction. It is
interesting to note that for spinless electrons the px � ipy
superconductor violates time reversal, while the vacuum
does not. For our surface states it is the insulator that
violates time reversal. A related effect could also occur
at the edge of a two-dimensional TI [20–22], which is
described by (1) and (2) restricted to one spatial dimen-
sion. At the boundary between a region with superconduct-
ing gap ��x and a region with insulating gap M�z we
find a MBS, analogous to the end states discussed in
Refs. [23,24]. In the following we will focus on STIS
junctions, which can lead to nonchiral one-dimensional
Majorana fermions, as well as MBSs.

Consider a line junction of width W and length L! 1
between two superconductors with phases 0 and � in
contact with TI surface states. We analyze the Andreev
bound states in the surface state channel between the
superconductors by solving the BdG equation with
��x; y� � �0e

i� for y >W=2, �0 for y <�W=2, and 0
otherwise. The calculation is similar to Titov, Ossipov, and
Beenakker’s [25] analysis of graphene superconductor-
normal-superconductor (SNS) junctions, except for the
important difference that graphene has four independent
Dirac points, while we have only one. For W � v=�0

there are two branches of bound states, which disperse
with the momentum q in the x direction. For W � � � 0
we find

 E	�q� � 	�v
2q2 � �2

0cos2��=2��1=2: (4)

For � � � the spectrum is gapless. It is useful to con-
struct a low energy theory, for q� 0 and � � �� �.
Finite W and � can then easily be included. We first solve
the BdG equation for the two E � 0 modes �a�1;2�y� at
q � 0 and � � �. It is useful to choose them to satisfy
��a � �a. Up to a normalization they may be written

 �1 	 i�2 � ��1;	i�; �	i;�1��Te	i�y=v�
R
jyj

0
d~y�0�~y�=v: (5)

We next evaluate h�ajq�x�zj�bi and h�aj��0��y�
W��yj�bi to obtain the ‘‘k � p’’ Hamiltonian,

 

~H � �i~v�x@x � 
�
y; (6)

where ~v � v�cos�W � ��0=�� sin�W��2
0=��

2 � �2
0�

and 
 � �0 cos��=2�. The Pauli matrices �x;yab act on �a
and are different from those in (2). In this basis � � i�yK
and � � K. ~H resembles the Su-Schrieffer-Heeger (SSH)
model [26]. However, unlike that model, the E	�q� states
are not independent, and the corresponding Bogoliubov
quasiparticle operators satisfy ���q� � ����q�y. The
system is thus half a regular 1D Fermi gas, or a nonchiral
‘‘Majorana quantum wire.’’

Below it will be useful to consider junctions that bend
and close. When a line junction makes an angle � with the
x axis, the basis vectors (5) are modified according to �a !
ei�z�=2�a. ~H , however, is unchanged even when ��x�
varies. On a circle, �a changes sign when � advances by
2�. Therefore, eigenstates of ~H must obey antiperiodic
boundary conditions, ’�0� � �’�2��.

Next consider a trijunction, where three superconductors
separated by line junctions meet at a point, as in Fig. 1(c).
When �k�1;2 is in the shaded region of Fig. 1(d), a MBS
exists at the junction. Though the general BdG equation
cannot be solved analytically, this phase diagram can be
deduced by solving special limits. When �k � 0, there is
no bound state. Another solvable limit is when three line
junctions with W � 0 are oriented at 120
, and �k �
	k�2�=3�. This is a discrete analog of a 	 vortex with
C3 symmetry, and is indicated by the circles in Fig. 1(d).
For � � 0 we find a MBS identical to (3) with the ex-
ponent replaced by ��0n̂ � r=v. Here n̂ is a constant unit
vector in each superconductor that bisects the angle be-
tween neighboring junctions. The MBS cannot disappear
when �k are changed continuously unless the energy gap
closes. The phase boundaries indicated in Fig. 1(d) there-
fore follow from the solution of the line junction and occur
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FIG. 1. (a) A STIS line junction. (b) Spectrum of a line
junction for W � � � 0 as a function of momentum for various
�. The solid line shows the Andreev bound states for � � �.
The dashed lines are for � � 3�=4, �=2, and �=4. The bound
states for � � 0 merge with the continuum, indicated by the
shaded region. (c) A trijunction between three superconductors.
(d) Phase diagram for the trijunction. In the shaded regions there
is a 	 MBS at the junction.

PRL 100, 096407 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2008

096407-2

2D topological insulator. Fu and Kane, PRL 100,
096407 (2008)

Conditions
1 Superconductor-

topological
insulator-superconductor
structure

2 Majorana bound states at
vortices

Rep. Prog. Phys. 75 (2012) 076501 J Alicea

Figure 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin–orbit-coupled wire. (b) Band
structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the
chemical potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate
superconductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy
Majorana modes as shown in (d).

structure in the limit where h = 0. Due to spin–orbit coupling,
the blue and red parabolas respectively correspond to electronic
states whose spin aligns along +y and−y. Clearly no ‘spinless’
regime is possible here—the spectrum always supports an even
number of pairs of Fermi points for any µ. The magnetic field
remedies this problem by lifting the crossing between these
parabolas at k = 0, producing band energies

ε±(k) = k2

2m
− µ ±

√
(αk)2 + h2 (67)

sketched by the solid black curves of figure 6(b). When the
Fermi level resides within this field-induced gap (e.g. for µ

shown in the figure) the wire appears ‘spinless’ as desired.
The influence of the superconducting proximity effect on

this band structure can be intuitively understood by focusing
on this ‘spinless’ regime and projecting away the upper
unoccupied band, which is legitimate provided � � h.
Crucially, because of competition from spin–orbit coupling
the magnetic field only partially polarizes electrons in the
remaining lower band as figure 6(b) indicates schematically.
Turning on � weakly compared with h then effectively
p-wave pairs these carriers, driving the wire into a topological
superconducting state that connects smoothly to the weak-
pairing phase of Kitaev’s toy model (see [34] for an explicit
mapping).

More formally, one can proceed as we did for the
topological insulator edge and express the full, unprojected
Hamiltonian in terms of operators ψ

†
±(k) that add electrons

with energy ε±(k) to the wire. The resulting Hamiltonian
is again given by equations (57) and (58) (but with v →
α and band energies ε±(k) from equation (67)), explicitly
demonstrating the intraband p-wave pairing mediated by �.
Furthermore, equation (60) provides the quasiparticle energies
for the wire with proximity-induced pairing and again yields
a gap that vanishes only when h =

√
�2 + µ2. For fields

below this critical value the wire no longer appears ‘spinless’,
resulting in a trivial state, while the topological phase emerges
at higher fields,

h >
√

�2 + µ2 (topological criterion). (68)

Figure 6(c) summarizes the phase diagram for the wire. Note
that this is inverted compared with the topological insulator

edge phase diagram in figure 5(d). This important distinction
arises because the k2/(2m) kinetic energy for the wire causes
an upturn in the lower band of figure 6(b) at large |k|, thereby
either adding or removing one pair of Fermi points relative to
the edge band structure.

Since a wire in its topological phase naturally forms a
boundary with a trivial state (the vacuum), Majorana modes
γ1 and γ2 localize at the wire’s ends when the inequality
in equation (68) holds. Majorana-trapping domain walls
between topological and trivial regions can also form at the
wire’s interior by applying gate voltages to spatially modulate
the chemical potential [34, 117] or by driving supercurrents
through the adjacent superconductor [102] (using the same
mechanism discussed in section 3.2). Figure 6(d) illustrates
an example where four Majoranas form due to a trivial region
in the center of a wire.

It is useful address how one optimizes the 1D wire setup
to streamline the route to experimental realization of this
proposal. This issue is subtle, counterintuitive, and difficult
even to define precisely given several competing factors.
First, how well should the wire hybridize with the parent
superconductor? The naive guess that the hybridization should
ideally be as large as theoretically possible to maximize the
pairing amplitude � imparted to the wire is incorrect. One
practical issue is that exceedingly good contact between the
two subsystems may lead to an enormous influx of electrons
from the superconductor into the wire, pushing the Fermi level
far above the Zeeman-induced gap of figure 6(b) where the
topological phase arises. Restoring the Fermi level to the
desired position by gating will then be complicated by strong
screening from the superconductor.

Reference [93] emphasized a more fundamental issue
related to the optimal hybridization. The topological phase’s
stability is determined not only by the pairing gap induced at
the Fermi momentum, EkF ∝ �, but also the field-induced
gap at zero momentum, E0 = |h −

√
�2 + µ2|, required

to open a ‘spinless’ regime. The minimum excitation gap
for the topological phase is set by the smaller of these two
energies. As reviewed in section 3.1, increasing the tunneling
� between the wire and superconductor indeed enhances �

but simultaneously reduces the Zeeman energy h. From the
effective action in equation (49) we explicitly have h = Zhbare

and � = (1 − Z)�sc, where hbare is the Zeeman energy for

15

1D nanowire. (b): Time-reversal symmetry is
present (red & blue) and broken by B (black).

Lutchyn, Sau, and Das Sarma, PRL 105, 077001
(2010)

Conditions
1 Spin-orbit interactions in

the nanowire

2 In the proximity to an
s-wave superconductor

3 Moderate magnetic field
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MF in QIS: Topological Q. computating

MFs define a topologically protected Q. memory

2 Majorana separated bound states = 1 fermion
I 2 degenerate states (full/empty) = 1 qubit

2N separated Majoranas = N qubits

Q. information is stored non locally
I Immune from local decoherence

Braiding performs unitary operations: Non-Abelian statistics

Ivanov, PRL 86, 268 (2001); Kitaev (2003)
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Detection of MFs: The Q. transport idea

Zero-bias peak of differential conductance as signature of MFs

We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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InSb nanowires contacted with one normal (gold)
and one superconducting (NbTiN) electrode. Mourik

et al., Science 336, 1003 (2012)
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Figure 2 |A suspended Al–InAs nanowire on gold pedestals above p-type silicon. The p-type silicon serves as a global gate (GG) coated with 150 nm
SiO2. a, A type I device with an additional gold pedestal at the centre, a gold normal contact at each end of the wire and an aluminium superconducting
contact at the centre. Two narrow local gates (RG and LG), 50 nm wide and 25 nm high, displaced from the superconducting contact by 80 nm, affect both
the barrier height near the Al edge and the chemical potential in the wire. b, A type II device without the centre pedestal, thus allowing control of the
chemical potential under the Al contact. c, Scanning electron micrograph of a type II device (scale bar, 300 nm), with a 5� voltage source VSD and a
cold-grounded drain. Inset: high-resolution TEM image (viewed from the 〈1120〉 zone axis) of a stacking-fault-free, wurtzite-structure, InAs nanowire,
grown on (011) InAs in the 〈111〉 direction. The TEM image (scale bar, 10 nm) is courtesy of R. Popovitz–Biro. A more detailed image can be found in the
Supplementary Information. d, An estimated potential profile along the wire.

end, some 50 nm above a Si/SiO2 substrate. Two types of device
were tested (Fig. 2a,b): in both, the wires were contacted with two
gold layers at their ends (serving as low-resistance contacts), and
a superconducting aluminium strip (100 nm thick and ∼150 nm
wide) at the centre. In type I devices a gold pillar supported
the wire under the aluminium electrode (the Al critical field was
∼60–70mT), whereas in type II devices the centre pillar wasmissing
(the Al critical field was∼100–150mT for different devices) and the
critical temperature was∼1K, consistent with the superconducting
Bardeen–Cooper–Schrieffer gap (1∼ 150 µeV). The conducting Si
substrate served as a global gate (effective under the superconductor
only in type II devices), and two additional narrow local gates
(Fig. 2d), placed 80 nm away from the superconductor edges
(25 nm thick, 50 nm wide). Being close to the wire, they affected
both the potential barriers near the edges of the superconductor,
and the chemical potential along the wire.

Before cooling, the devices dwelled at room temperature in a
vacuum pumped chamber for 24 h with the conductance increasing
by some 20-fold (owing to desorption of surface impurities).
With the dilution refrigerator temperature at 10mK, the estimated
electron temperature in the wire was ∼30mK. A 575Hz 1–2 µV
root-mean-squared signal was fed to the superconducting contact
and the resultant current was collected at one side of the wire (by
the ohmic contact), to be amplified later by a home-made current
amplifier (Fig. 2). We also measured the conductance at a higher
frequency (∼1MHz), employing a low-noise voltage preamplifier
cooled to 1K (ref. 29).

Our numerical simulations were based on a generalization of the
formalism pioneered by Blonder, Tinkham and Klapwijk30, which
allows modelling a large number of segments in the wire, including
spin flip processes, going beyond the small bias approximation.
Each segment was characterized by different parameters, with
discontinuous jumps at the interfaces. Using wavefunctions
matching at the interfaces, the Bogoliubov–de Gennes equations
were solved to find the scattering states at each energy and thus the
corresponding transmission and reflection amplitudes (for further
details see, the Supplementary Information and refs 31–34).

Study of the parameters
We start with a calibration of the two types of studied device. Bare
and ungated wires are n-type with a density of∼106 cm−1, and thus
are likely to occupy a single subband. The presence of disorder and
weak barriers near the metal contacts make the conductance highly
sensitive to the chemical potential, namely, to the gate voltage. At
the lower conductance range (large barrier at the superconductor
interface, or low density), Cooper pair transport is suppressed
and the zero-bias conductance may be flat or exhibit either dips
or peaks. There are a few potential causes of the observed ZBPs;
reflectionless tunnelling, being constructive interference between
electron reflection and Andreev reflection35 in S–I–N–I devices (I,
insulator; S, superconductor; N, normal), which are expected to
quench with magnetic field36,37; Andreev bound state—common
in S–N–I, likely to be split (weakly) at zero field and Zeeman split
further with field38,39; Kondo correlations—due to weakly confined

NATURE PHYSICS | VOL 8 | DECEMBER 2012 | www.nature.com/naturephysics 889
© 2012 Macmillan Publishers Limited.  All rights reserved. 
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Figure 3 | Evolution of the ZBP with chemical potential and magnetic field, for the VRG range 1.17–1.24 V at VGG=−18.3 V for a type II device (D4). The
cuts are taken at VRG= 1.183, 1.205 and 1.228 V. a, The main features at B=0 are the Al superconducting gap ∆Al∼±150 µeV, and the induced gap
∆ind∼±45 µeV. At B= 30 mT the gap closes at VRG= 1.205 V and turns into a relatively wide, barely split, ZBP; to split at higher and lower gate voltages.
At B= 50 mT, a sharper ZBP persists in a wide range of gate voltage, with marked splitting. At B= 70 mT, the ZBP peak splits in a wide range of gate
voltage. b, Colour plot of the ZBP with equal height contours lines, from 0.106e2/h to 0.197e2/h. The arrows indicate the transition from a single ZBP to
split peaks. c, Simulated behaviour using analytical expressions for the wire spectrum. Contours lines of constant-size Majorana wavefunction,
ξ = h̄vF/Eg∼ 1.5 L, 3L and 10L are blue, red and black, respectively. The simulation of ξ < 3L (red line contour) is similar to the contours of the data b.
Although the range of chemical potential for which the wire is topological increases as a function of B, at higher B the gap decreases, increasing the extent
of the Majoranas. The sharp termination of each contour at some maximal value of B is due to the weak dependence of ∆ind on µ.

electron puddle(s) between the topological or the bare wire
segments. Being pronounced at small or vanishing superconducting
gap, and exhibiting Zeeman splitting40,41; weak anti-localization,
whichmay be pronouncedwith field, but ismore likely in amultiple
channel device42. These plausible effects will be addressed in the
discussion section and in the Supplementary Information.

From the observed Zeeman splitting of the zero-field ZBP, we
estimated g ∼ 20 (we assumed an equal voltage drop on the two

inadvertent potential barriers—one at the superconductor/normal
interface and one and at the ohmic contact/normal interface,
leading to 4EZ

∼=125 µeV atB=50mT; ref. 43). The apparently large
g -factor may represent an enhanced magnetic field along the wire
due to its repulsion from the bulk of the superconductor.

Most of the presented data were taken with type II devices.
Two main features were always observed in the conductance as a
function of eVSD (see Figs 3–5). The first feature is two symmetric

890 NATURE PHYSICS | VOL 8 | DECEMBER 2012 | www.nature.com/naturephysics
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Al-InAs nanowire on gold pedestals above p-type
silicon. Das, Ronen, Most, Oreg, Heiblum and

Shtrikman, Nat. Phys. 8, 887 (2012)
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Zero-bias peak of differential conductance

Subsequent studies show that, the zero-bias peak can also be
generated in topologically trivial system due to

the strong disorder in the nanowire
Liu, Potter, Law, Lee, PRL 109, 267002 (2012)

Pikulin, Dahlhaus, Wimmer, Schomerus, Beenakker, NJP 14, 125011 (2012)

the smooth confinement potential at the wire end
Kells, Meidan, Brouwer, PRB 86, 100503(R) (2012)

“... implies that the mere observation of a zero-bias peak in the
tunneling conductance is not an exclusive signature of a
topological superconducting phase, even in the ideal clean single
channel limit”

More ways to double-confirm the formation of MF in the relevant
systems are desired
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Motivation

1 Can periodic driving induce more MFs to enhance the
experimental signature generated by MFs?

2 Can periodic driving supply a novel way to identify the
experimental signal generated by MFs from other
mechanism?
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Model

Ĥ = −µ
N∑

l=1

ĉ†l ĉl −
2∑

a=1

N−a∑

l=1

(taĉ
†
l ĉl+a + ∆aĉ

†
l ĉ
†
l+a + H.c.)

Chemical potential: µ

Hopping amplitude: ta

Pairing potential: ∆a = |∆a| eiφa

The static model
One dimensional spinless fermionic atoms in 
an optical lattice

C. V. Kraus et. al. NJP (2012)
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Phase diagram

φ = φ1 − φ2 determines the topological class 1

Symmetry T. class T. invariant MMs2

φ = 0, π T,PH,C BDI Z 2
φ =other PH D Z2 1

1
Ryu, Schnyder, Furusaki, and Ludwig, NJP 12, 065010 (2010)

2
Schnyder, Ryu, Furusaki, and Ludwig, PRB 78, 195125 (2008)
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How to generate more MFs

0 1 2 3 4
-5

-2

0

2

5

t1

t 2

-1

1

Phase diagram in D class charactarized by ν (left) and BDI class characterized by winding number W
(right)

Two ingredients in generating more MFs 3

1 Time reversal symmetry

2 Long-range interactions

Both introduce additional difficulties to the practical experiments

3
Niu, Chung, Hsu, Mandal, Raghu, and Chakravarty, PRB 85, 035110 (2012)
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Driving protocol

Ĥ(t) =

{
Ĥ1 = Ĥ(φ1, φ2), for t ∈ [nT, (n+ 1/2)T )

Ĥ2 = Ĥ(φ2, φ1), for t ∈ [(n+ 1/2)T, (n+ 1)T )

For each of the half periods, the system belongs to D class,
where at most one pair of MFs can be formed
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FIG. 2: (Color online) Quasi-energy spectrum for a driven
case (a) vs energy spectrum for a static case (b) obtained
under an open boundary condition. The dashed blue line and
solid black line stand for two degenerate pairs and a single pair
of MMs, respectively. t1 = 1, N = 200, and other parameters
are the same as in Fig. 1(b).

symmetry of Heff, one may construct a chiral symmetry
for Heff, a fact consistent with our above result that n⃗(k)
is in the yz plane for all k. The above analysis makes it
clear that our driving protocol changes both the under-
lying symmetry and the topological class of the system.

Without a gap closing between the two branches of
Ek, the topological invariant Z in class BDI can be ob-
tained by the integer winding number W =

∫ π

−π
dθk

2π ∈ Z,

where θk = arctan[n3(k)/n2(k)]. A computational exam-
ple illustrating W is shown in Fig. 1(a). The number of
pairs of MMs under an open boundary condition is then
given by |W |. As some system parameters continuously
change, gap closing and consequently topological phase
transitions occur.7 Figure 1(b) depicts a phase diagram,
obtained by explicitly evaluating W . It is seen that |W |
ranges from 0 to 3. This indicates that three pairs of
MMs can be formed in our driven system. This is beyond
the expectation for the undriven model, where the NNN
interaction can give at most two pairs of MMs. There-
fore, the finding of |W | = 3 in some parameter regime
is a clear sign that our driving protocol may synthesize
some features absent in the static model. The bound-
aries between different topological phases of our driven
system are also interesting on their own right. The solid
and dotted lines in Fig. 1(b) depict the topological phase
transition points at which W jumps by one. This is found
to go with the gap closing at k = 0 or ±π. The dashed
line gives the phase transition points at which W jumps
by two. This happens at k = π/2.

To confirm our theoretical results presented in Fig. 1
we carry out numerical calculations of the quasi-energy
spectrum ϵ under an open boundary condition. Because
ϵ = π/T is equivalent to ϵ = −π/T , Floquet MMs have
two flavors: one at ϵ = 0 and the other at ϵ = ±π/T . The
second flavor is certainly absent in an undriven system.44

For fixed t1 = 1 and a varying t2, Fig. 2(a) depicts the for-
mation of both flavors of Floquet MMs, with the second
flavor emerging in a wider parameter regime. The total
number of pairs of MMs should equal |W | (if the wind-
ing number is well defined). For example, Fig. 2(a) shows
that two degenerate pairs of MMs at ϵ = ±π/T and one
pair of MMs at ϵ = 0 are formed when t1 = 1 and t2 = 4.
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FIG. 3: (Color online) The expansion coefficients of Heff

for T = 0.2 (a) and 2.0 (b), and of the static H for
the real (c) and imaginary (d) parts in the operator basis

(c1, · · · , cN , c†
1, · · · , c†

N )T . l and m are the base indices. Other
parameters are the same as in Fig. 2.

This agrees with the W = −3 region shown in Fig. 1(b).
Likewise, all other details in Fig. 2(a) are fully consistent
with our analytical results shown in Fig. 1(b). We have
also studied the dynamics of the formed MMs in one full
period of driving: They are indeed well localized at two
edges. Further, as a comparison with our static model
H, we plot in Fig. 2(b) our system’s energy spectrum in
the absence of driving. It is seen that at most one pair
of MMs can be formed only in a very narrow t2 regime
for the large |µ| case. The parallel driven case is how-
ever different: One may still obtain three pairs of MMs.
Thus, even in the large |µ| case, our driving protocol can
still generate more MMs than the static case. This is
both interesting and useful because, in general, the large
|µ| is preferred for the protection of MMs against strong
disorder in actual experiments.

In efforts to generate even more MMs, we now extend
our direct numerical studies to other parameter regimes.
Remarkably, the BCH formula in Eq. (2) indicates that as
T increases, the nested commutators on the right hand
side of Eq. (2) will have heavier weights. An increas-
ing T can then induce longer-range interactions in Heff.
This trend is investigated in Fig. 3, where the expansion
coefficients of Heff [numerically obtained from Eq. (1)],
with Heff expanded as a quadratic function of the oper-

ators (c1, · · · , cN , c†
1, · · · , c†

N )T , are shown for two differ-
ent values of T . For comparison, the expansion coeffi-
cients for the static case are also plotted in Figs. 3(c)
and 3(d). A few interesting observations can be made
from Fig. 3. First, the plotted expansion coefficients of
Heff are all real, which is different from the shown static
case with both real and imaginary coefficients. This dif-
ference reflects the restored time-reversal symmetry for
the driven case. Second, in sharp contrast to the re-

Phase diagram in D class characterized by ν (left) and the corresponding energy spectrum
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Role of periodic driving in Ĥeff

[Ĥ(t)− i~∂t]|φn(t)〉 = εn|φn(t)〉 ⇔ ÛT |φn(0)〉 = e
−i
~ ĤeffT |φn(0)〉

1 Restore time-reversal symmetry

ˆ̄KÛT ˆ̄K−1 = e
iĤ1T

2~ e
iĤ2T

2~ = Û †T ,

with ˆ̄K ≡ K̂Ĝ and Ĝ = e−i
φ1+φ2

2

∑
l c
†
l cl .

2 Synthesize longer-range interaction (Baker-Campbell-Hausdorff formula)

ÛT = e−
iT
2~ Ĥ2e−

iT
2~ Ĥ1 ≡ e

−i
~ ĤeffT

Ĥeff = Ĥ1+Ĥ2

2
− iT

8~ [Ĥ2, Ĥ1]− T 2

96~2

[
Ĥ2 − Ĥ1, [Ĥ2, Ĥ1]

]
+ · · ·

Even the interactions in Ĥ1 and Ĥ2 are short ranged, the
ones in Ĥeff may be long ranged due to the commutators.
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Numerical confirmation
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FIG. 2: (Color online) Quasi-energy spectrum for a driven
case (a) vs energy spectrum for a static case (b) obtained
under an open boundary condition. The dashed blue line and
solid black line stand for two degenerate pairs and a single pair
of MMs, respectively. t1 = 1, N = 200, and other parameters
are the same as in Fig. 1(b).

symmetry of Heff, one may construct a chiral symmetry
for Heff, a fact consistent with our above result that n⃗(k)
is in the yz plane for all k. The above analysis makes it
clear that our driving protocol changes both the under-
lying symmetry and the topological class of the system.

Without a gap closing between the two branches of
Ek, the topological invariant Z in class BDI can be ob-
tained by the integer winding number W =

∫ π

−π
dθk

2π ∈ Z,

where θk = arctan[n3(k)/n2(k)]. A computational exam-
ple illustrating W is shown in Fig. 1(a). The number of
pairs of MMs under an open boundary condition is then
given by |W |. As some system parameters continuously
change, gap closing and consequently topological phase
transitions occur.7 Figure 1(b) depicts a phase diagram,
obtained by explicitly evaluating W . It is seen that |W |
ranges from 0 to 3. This indicates that three pairs of
MMs can be formed in our driven system. This is beyond
the expectation for the undriven model, where the NNN
interaction can give at most two pairs of MMs. There-
fore, the finding of |W | = 3 in some parameter regime
is a clear sign that our driving protocol may synthesize
some features absent in the static model. The bound-
aries between different topological phases of our driven
system are also interesting on their own right. The solid
and dotted lines in Fig. 1(b) depict the topological phase
transition points at which W jumps by one. This is found
to go with the gap closing at k = 0 or ±π. The dashed
line gives the phase transition points at which W jumps
by two. This happens at k = π/2.

To confirm our theoretical results presented in Fig. 1
we carry out numerical calculations of the quasi-energy
spectrum ϵ under an open boundary condition. Because
ϵ = π/T is equivalent to ϵ = −π/T , Floquet MMs have
two flavors: one at ϵ = 0 and the other at ϵ = ±π/T . The
second flavor is certainly absent in an undriven system.44

For fixed t1 = 1 and a varying t2, Fig. 2(a) depicts the for-
mation of both flavors of Floquet MMs, with the second
flavor emerging in a wider parameter regime. The total
number of pairs of MMs should equal |W | (if the wind-
ing number is well defined). For example, Fig. 2(a) shows
that two degenerate pairs of MMs at ϵ = ±π/T and one
pair of MMs at ϵ = 0 are formed when t1 = 1 and t2 = 4.
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FIG. 3: (Color online) The expansion coefficients of Heff

for T = 0.2 (a) and 2.0 (b), and of the static H for
the real (c) and imaginary (d) parts in the operator basis
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1, · · · , c†
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parameters are the same as in Fig. 2.

This agrees with the W = −3 region shown in Fig. 1(b).
Likewise, all other details in Fig. 2(a) are fully consistent
with our analytical results shown in Fig. 1(b). We have
also studied the dynamics of the formed MMs in one full
period of driving: They are indeed well localized at two
edges. Further, as a comparison with our static model
H, we plot in Fig. 2(b) our system’s energy spectrum in
the absence of driving. It is seen that at most one pair
of MMs can be formed only in a very narrow t2 regime
for the large |µ| case. The parallel driven case is how-
ever different: One may still obtain three pairs of MMs.
Thus, even in the large |µ| case, our driving protocol can
still generate more MMs than the static case. This is
both interesting and useful because, in general, the large
|µ| is preferred for the protection of MMs against strong
disorder in actual experiments.

In efforts to generate even more MMs, we now extend
our direct numerical studies to other parameter regimes.
Remarkably, the BCH formula in Eq. (2) indicates that as
T increases, the nested commutators on the right hand
side of Eq. (2) will have heavier weights. An increas-
ing T can then induce longer-range interactions in Heff.
This trend is investigated in Fig. 3, where the expansion
coefficients of Heff [numerically obtained from Eq. (1)],
with Heff expanded as a quadratic function of the oper-

ators (c1, · · · , cN , c†
1, · · · , c†

N )T , are shown for two differ-
ent values of T . For comparison, the expansion coeffi-
cients for the static case are also plotted in Figs. 3(c)
and 3(d). A few interesting observations can be made
from Fig. 3. First, the plotted expansion coefficients of
Heff are all real, which is different from the shown static
case with both real and imaginary coefficients. This dif-
ference reflects the restored time-reversal symmetry for
the driven case. Second, in sharp contrast to the re-

coefficients of Hamiltonian expanded in the operator basis (c1, · · · , cN , c†1, · · · , c
†
N

)T when T = 0.2 (a)

and 2.0 (b) and the real (c) and the imaginary (d) of static case.

1 Interaction range is enhanced for the driven case (a,b)
comparing with the static case (c,d)

2 The expansion coefficients of Ĥeff are real, which confirms the
restoring of time-reversal symmetry
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Multiple MFs

1 Multiple MFs can be generated
2

precisely because time-reversal symmetry is not restored
by the periodic driving therein.

In the following we present our detailed results using
a model of a 1D spinless p-wave superconductor with the
nearest- and next-nearest-neighbor (NNN) interactions
only. Under a periodic modulation of superconducting
phases, we not only demonstrate that many Floquet MMs
(e.g. 13 pairs in one case) can be generated, but also show
that the number of the MMs may be widely tuned by
scanning the modulation period. These results also shed
more light on the inherent advantages of driven systems
in exploring new topological states of matter, which can
be useful for other timely topics related to long-range
interactions (e.g., fractional Chern insulators.49,50)

Static model.—We start from the Kitaev model Hamil-
tonian for a 1D spinless p-wave superconductor

H = −µ

N∑

l=1

c†
l cl −

2∑

a=1

N−a∑

l=1

(tac†
l cl+a + ∆ac†

l c
†
l+a + h.c.),

where µ is the chemical potential, ta and ∆a = |∆a| eiϕa

with a = 1 (a = 2) describes the nearest- (next-nearest-)
neighbor hopping amplitude and pairing potential respec-
tively, and ϕa is the associated superconducting phas-
es. All energy-related parameters are scaled by |∆1| and
h̄ = 1 is set in our calculations. Majorana operators here

refer to (cl +c†
l ) or i(cl −c†

l ). Such synthesized MMs may
appear as edge modes under open boundary condition, if
the bulk band structure is topologically nontrivial.

The relative phase ϕ = ϕ1−ϕ2 determines the topolog-
ical class of H.51 For ϕ = 0 and π, H has time-reversal
and particle-hole symmetries. These cases then belong
to the so-called “BDI” class characterized by a topolog-
ical invariant Z. For other values of ϕ, H has particle-
hole symmetry only and falls into the so-called “D” class
characterized by a topological invariant Z2. The D class
can generate at most one pair of MMs. As to the BDI
class, despite its potential in forming many MMs,38 at
most two pairs of MMs can be generated here due to the
short-range nature of H.

Driven model.—We now turn to periodically driven
cases under a protocol given by Eq. (1). The emergence of
Floquet MMs is directly connected to topological proper-
ties of the eigenstates of the Floquet operator U(T ). Let
|u⟩ be an eigenstate of U(T ) with an eigenvalue e−iϵT ,
namely U(T )|u⟩ = e−iϵT |u⟩. Evidently, the eigenvalue
index ϵ is defined only up to a period 2π/T and hence
called “quasi-energy”. The periodicity in ϵ may lead to
a novel topological structure in driven systems, with the
corresponding topological classification revealed by the
homotopy groups.42 However, if the driven system be-
longs to a trivial class to this novel topological structure,
then topological properties of the driven system is fully
characterized by Heff defined in Eq. (1).38 This will be
the case for our driving protocol proposed below.

As an explicit example, we propose to switch between
two Hamiltonians H1 and H2 by the following: in the first
half period, H1 = H(ϕ1, ϕ2) with both superconducting
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FIG. 1: (Color online) (a) Winding of the n⃗(k) [see Eqs. (4)
and (5)] for k ∈ [−π, π]. W = −3, −2, 0, 1 correspond to
(t1, t2)=(1, 5), (1,3), (1, 0), (1, −3), respectively. Indicated
on each panel is the winding number W . The solid and dotted
line indicates a gap closing (of Ek) at k = 0 or ±π, while the
dashed line corresponds to a gap closing at k = π/2. Other
parameters are µ = −10, |∆2| = 2.5 and T = 0.2.

phase parameters ϕ1 and ϕ2 fixed; whereas in the second
half period, we swap ϕ1 and ϕ2 so that H2 = H(ϕ2, ϕ1).
Without loss of generality, we choose ϕ1 = π/2 and
ϕ2 = 0. Thus, within each half period, the Hamilto-
nian is in class D that breaks time-reversal symmetry. In
addition to a possible generation of long-range interac-
tions for Heff, this driving protocol is designed to recover
time-reversal symmetry. In particular, let K be a conven-

tional time-reversal operator and G ≡ e−i
ϕ1+ϕ2

2

∑
l c†

l cl be
a gauge transformation operator. Considering a general-
ized time-reversal operator K̄ ≡ KG, we find

K̄U(T )K̄−1 = e
iH1T

2h̄ e
iH2T

2h̄ = U†(T ). (3)

This constitutes a direct proof that our driven system
now possesses time-reversal symmetry, and as a result it-
s topological class is switched from class D to class BDI.
To further examine this restored time-reversal symme-
try, we work in the momentum representation and di-
rectly find an analytical Heff from Eq. (1). We define

ck =
∑

l cle
−ikl/

√
N and introduce the Nambu represen-

tation Ck = [ck, c†
−k]T . A standard procedure then leads

to Heff =
∑

k∈BZ C†
kHeff(k)Ck, with Heff(k) = Ekn⃗(k) · σ⃗,

where σ⃗ represents the Pauli matrices.41 The three com-
ponents of n⃗(k) are given by n1(k) = 0, and

n2(k) =
g1,k sin(skT )

sk sin(EkT )
− 2g2,kηk sin2 skT/2

s2
k sin(EkT )

, (4)

n3(k) =
ηk sin(skT )

sk sin(EkT )
+

2g1,kg2,k sin2 skT/2

s2
k sin(EkT )

, (5)

where ga,k = |∆a| sin(ak), sk = (η2
k +

∑
a g2

a,k)1/2,

ηk = −µ − 2
∑

a ta cos(ak), and cos(EkT ) = cos(skT ) +

2(g2
2,k/s2

k) sin2 skT/2. For each value of k, one obtains
two values of Ek and hence two values for the quasi-
energy ϵ. Consistent with the K̄ symmetry, we now have
H∗

eff(−k) = Heff(k). Noting the inherent particle-hole
symmetry of Heff, one may construct a chiral symmetry
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FIG. 2: (Color online) Quasi-energy spectrum for a driven
case (a) vs energy spectrum for a static case (b) obtained
under an open boundary condition. The dashed blue line and
solid black line stand for two degenerate pairs and a single pair
of MMs, respectively. t1 = 1, N = 200, and other parameters
are the same as in Fig. 1(b).

symmetry of Heff, one may construct a chiral symmetry
for Heff, a fact consistent with our above result that n⃗(k)
is in the yz plane for all k. The above analysis makes it
clear that our driving protocol changes both the under-
lying symmetry and the topological class of the system.

Without a gap closing between the two branches of
Ek, the topological invariant Z in class BDI can be ob-
tained by the integer winding number W =

∫ π

−π
dθk

2π ∈ Z,

where θk = arctan[n3(k)/n2(k)]. A computational exam-
ple illustrating W is shown in Fig. 1(a). The number of
pairs of MMs under an open boundary condition is then
given by |W |. As some system parameters continuously
change, gap closing and consequently topological phase
transitions occur.7 Figure 1(b) depicts a phase diagram,
obtained by explicitly evaluating W . It is seen that |W |
ranges from 0 to 3. This indicates that three pairs of
MMs can be formed in our driven system. This is beyond
the expectation for the undriven model, where the NNN
interaction can give at most two pairs of MMs. There-
fore, the finding of |W | = 3 in some parameter regime
is a clear sign that our driving protocol may synthesize
some features absent in the static model. The bound-
aries between different topological phases of our driven
system are also interesting on their own right. The solid
and dotted lines in Fig. 1(b) depict the topological phase
transition points at which W jumps by one. This is found
to go with the gap closing at k = 0 or ±π. The dashed
line gives the phase transition points at which W jumps
by two. This happens at k = π/2.

To confirm our theoretical results presented in Fig. 1
we carry out numerical calculations of the quasi-energy
spectrum ϵ under an open boundary condition. Because
ϵ = π/T is equivalent to ϵ = −π/T , Floquet MMs have
two flavors: one at ϵ = 0 and the other at ϵ = ±π/T . The
second flavor is certainly absent in an undriven system.44

For fixed t1 = 1 and a varying t2, Fig. 2(a) depicts the for-
mation of both flavors of Floquet MMs, with the second
flavor emerging in a wider parameter regime. The total
number of pairs of MMs should equal |W | (if the wind-
ing number is well defined). For example, Fig. 2(a) shows
that two degenerate pairs of MMs at ϵ = ±π/T and one
pair of MMs at ϵ = 0 are formed when t1 = 1 and t2 = 4.
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FIG. 3: (Color online) The expansion coefficients of Heff

for T = 0.2 (a) and 2.0 (b), and of the static H for
the real (c) and imaginary (d) parts in the operator basis

(c1, · · · , cN , c†
1, · · · , c†

N )T . l and m are the base indices. Other
parameters are the same as in Fig. 2.

This agrees with the W = −3 region shown in Fig. 1(b).
Likewise, all other details in Fig. 2(a) are fully consistent
with our analytical results shown in Fig. 1(b). We have
also studied the dynamics of the formed MMs in one full
period of driving: They are indeed well localized at two
edges. Further, as a comparison with our static model
H, we plot in Fig. 2(b) our system’s energy spectrum in
the absence of driving. It is seen that at most one pair
of MMs can be formed only in a very narrow t2 regime
for the large |µ| case. The parallel driven case is how-
ever different: One may still obtain three pairs of MMs.
Thus, even in the large |µ| case, our driving protocol can
still generate more MMs than the static case. This is
both interesting and useful because, in general, the large
|µ| is preferred for the protection of MMs against strong
disorder in actual experiments.

In efforts to generate even more MMs, we now extend
our direct numerical studies to other parameter regimes.
Remarkably, the BCH formula in Eq. (2) indicates that as
T increases, the nested commutators on the right hand
side of Eq. (2) will have heavier weights. An increas-
ing T can then induce longer-range interactions in Heff.
This trend is investigated in Fig. 3, where the expansion
coefficients of Heff [numerically obtained from Eq. (1)],
with Heff expanded as a quadratic function of the oper-

ators (c1, · · · , cN , c†
1, · · · , c†

N )T , are shown for two differ-
ent values of T . For comparison, the expansion coeffi-
cients for the static case are also plotted in Figs. 3(c)
and 3(d). A few interesting observations can be made
from Fig. 3. First, the plotted expansion coefficients of
Heff are all real, which is different from the shown static
case with both real and imaginary coefficients. This dif-
ference reflects the restored time-reversal symmetry for
the driven case. Second, in sharp contrast to the re-

Phase diagram and quasi-energy spectrum of the periodically driven system. T = 0.2

2 We may go further by increasing T , which induces
longer-range interactions in Ĥeff

t2 −8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8

T = 0.5 2 4 4 3 3 2 0 0 0 1 1 2 2 4 4 4 3

T = 1.0 6 6 7 7 6 3 3 2 1 1 2 5 5 6 7 7 6

T = 2.0 13 13 12 11 9 8 8 1 1 3 4 7 11 10 13 13 12
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Spatial distribution of MFs

The evolution of the distribution of the generated three MFs over the lattices

All the generated MFs are confined in the edge of the lattice
during the time evolutioin
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Conclusions

The number of the MFs may be greatly enhanced and widely
tuned by periodic driving

1 The enhanced signal is more robust against experimental
disorder, and contaminations from thermal excitations

2 It supplies a novel way to identify if the signal originates
from MFs by observing the change of the signal in response
of the tuning of the driving coefficients

The generation of a tunable number of MFs is expected to
offer another dimension for experimental studies
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Summary

We may manipulate (quasi-)energy spectrum by periodic
driving such that novel quantum phase transition is triggered

Periodically driven system may exhibit novel properties with
no analogue to its static correspondence
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Thank you for your attention
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