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2D cluster state
 Created by applying CZ gates to each pair with edge

[Raussendorf&Briegel ‘01]

 Ground state of 5-body Hamiltonian

vX ZZ
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Z

X,Y,Z Pauli matrices

(except boundary spins)



Resource for universal quantum computation
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement along each bridge simulates two-qubit gate (CNOT)

Universal measurement-based quantum computation (MBQC)

[Raussendorf&Briegel ‘01]



Other states for universal QC?

 Other 2D graph/cluster states* on regular lattices: 
triangular, honeycomb, kagome, etc.

 A few other states from tensor network construction
and TriCluster state

[Van den Nest et al. ‘06]

[Gross & Eisert ‘07, ‘10]

 So far still no complete characterization for resource states

 The first known resource state is the 2D cluster state

[Chen et al. ’09]

 Family of 2D Affleck-Kennedy-Lieb-Tasaki states [Wei, Affleck & Raussendorf ’11&12; 
Miyake ’11; Wei ‘13, Wei, 

Haghnagadar &Raussendorf ‘14]



Resource states from ground states? 

 Unique ground states of certain gapped Hamiltonians?

 If so, create resources by cooling!

 Desire simple and short-ranged (nearest nbr) 2-body    
Hamiltonians

[Nielsen ‘06] Cluster states require few-body (e.g. 5-body) interactions!

 AKLT states are ground state of two-body interacting Hamiltonians
(possibly gapped)

 What about thermal states for quantum computation?

useful?

[Li,Browne,Kwek,Raussendorf &Wei ‘11]

[AKLT ’87,88] [Garcia-Saez,Murg,Wei ’12]



Main motivations here

 Universal resource states from certain phases of matter?

 Browne et al.--- percolation
 Bartlett et al. --- (1) Cluster in B field; (2) deformed AKLT
 Murao et al. --- interacting cluster at finite T
 Li et al. --- thermal states for QC

 it’s a difficult question in general, but some examples:

 System parameter vs. temperature “phase diagram”
in terms of universal quantum computation?

 Can we can characterize regions in the phase diagram by
the quantum computational power of the equilibrium 
states?



Some examples why transitions 
in quantum computational 

power make sense…



Cluster state and percolation

 Cluster-state at faulty square lattice:

poccupy : system parameter QC possible if poccupy > pperco.threshold

[Browne, Elliot, Flammia, Merkel, Miyake,Short ‘08]
cf [Gross, Eisert, Schuch,Perez-Garcia rowne, ‘07]

 Transition in quantum computational power



Cluster phase?
 Doherty and Bartlett: Cluster Hamiltonian in B field

with known phase transition at |B|=1

 They argue that the phase |B|<1 is characterized 
by fidelities of universal gates

[Doherty, Bartlett ‘09]

 transition in quantum computational power 

 can be mapped to 

[Doherty, Bartlett ‘09]

 Question: what about finite temperature T?



Deforming AKLT state

 Spin-3/2 AKLT state on honeycomb 
lattice is universal [Wei, Affleck & Raussendorf ’11; 

Miyake ’11]

 Deformed AKLT also universal (in a range of deformation) 

 Transition to non-universal coincides
with transition to Neel order 

[Darmawan,Brennen,Bartlett ‘12]

NeelAKLT-like

6.46

 Q: finite T?



Interacting cluster Hamiltonian at finite T

 Gate fidelity shows a transition at classical Ising transition Tc

vX ZZ

Z

Z


(mapped to classical Ising
by CZ)

[Fujii, Nakata, Ohzeki, Murao ‘13]

 Q: can we add local field
to vary Hamiltonian? 



Thermal states as resource

[Li, Browne, Kwek, Raussendorf, Wei ‘11]

 2D & 3D spin Hamiltonians

 Thermal states can be used 
for universal QC, if T/∆ is such 
that error below threshold

Q: can we vary some system 
parameter or local field?



Goal: Phase diagram with temperature 
and other system parameter

 Models illustrated:

 Varying both T & some system parameter?
 difficult problem: Hamiltonian not solvable in general

 Percolation: vary probability only

 Cluster with B field and deformed AKLT: only at zero T

 Interacting cluster at finite T: mapped to classical Ising

 Thermal states for universal QC: Hamiltonian Heisenberg-like



Goal: Phase diagram of quantum computational power

useful
for QC

not useful
for QC

[Wei,Li,Kwek ‘14]

 Another question: Does transition in quantum computational power 
necessarily coincide with transition in the phase of matter?

 Will construct two models to investigate these
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First: Toy model
 3 spin-1/2 at sides and 1 spin-3/2 at center u

1’

2’

3’

2

31

u Mathematically project joint state of (1’2’3’) to their
symmetric subspace (i.e. virtual to physical)



Spin 3/2 and three virtual qubits
 Addition of angular momenta of 3 spin-1/2’s 

 The four basis states in the symmetric subspace

Symmetric subspace



Toy model: building block
 3 spin-1/2 at sides and 1 spin-3/2 at center u

 Form an AKLT-like state:

1’

2’

3’

2

31

u

 Unique ground state of Projector to total S=2  joint subspace of spins i and u

=

GHZ state:



Toy model Hamiltonians

2

31

u

 Exactly diagonalizable
 Finite energy gap = 1

spin 3/2

spin 1/2

 Next: Allow the Hamiltonians to vary



Toy model is for 4 spins.
Q: how do we scale to 2D or 3D structure 

for universal quantum computation? 

Ans. Use toy model as a building block
 Patch up 2D or 3D structure



2D or 3D spin models
 Use this as a building block to construct 

spin systems with a spectral gap

Regard two bond qubits as a spin-3/2

: bond particle

: center particle

 The spectral property is inherited from toy model



2D or 3D structure
 Use this as a building block to construct 

spin systems with a spectral gap
2

31

u



Two spin models
2

31

Ferro-like
(degenerate)

AKLT-like(gapped)
AKLT-like(gapped)
 no phase transitiion

1st-order phase transition

 No transitions at finite T (free energy analytic)

u



Two spin models
2

31

Ferro-like
(degenerate)

AKLT-like(gapped)
AKLT-like(gapped)
 no phase transitiion

1st-order phase transition

u

 What about transitions in quantum computational power?
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Computational phase (in 2D)

 How to understand the computational phase 
in δ (dz) –vs.-T plane? 

Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC



Zero temperature
2

31

Ferro-like
(degenerate) AKLT-like(gapped) AKLT-like(gapped)

 no phase transitiion

u

 For                      , can filter out a GHZ 
with probability=1 via generalize measurement (next slides)

 Wavefunction:



Distill a four-spin GHZ state (@ δ=dz=0)

 Central spin has 4 levels: how to reduce to 2 levels?

 Use projection?

1’

2’

3’

2

31

u

Pz

 What if the projection does not succeed?



Distill a four-spin GHZ state (@ δ=dz=0)

 Central spin has 4 levels: how to reduce to 2 levels?

 Use projection?

1’

2’

3’

2

31

u

Pz

 What if the projection does not succeed?



Generalized measurement (POVM)

 POVM outcome au={x,y, or z} is random

 Three elements satisfy: 

[Wei,Affleck & 
Raussendorf ’11;

Miyake ‘11]

 au : new quantization axis

 state becomes 

 effective 2-level system

u: site index for 
center particles

 x and y axes
are also good : 



1’

2’

3’

2

31

u

 POVM outcome au={x,y.z} indicates a randomly chosen 
quantization axis and the state becomes

 Re-label states @ site u: 

Post-POVM state is a GHZ state:

Distill a four-spin GHZ state (@ δ=dz=0)



1’

2’

3’

2

31

u

 Use combination of filtering D(a) and POVM F’s

 Percolation consideration for cluster state

Distill a four-spin GHZ state (@ δ=dz≠0)

1/a

 For                  , need a different POVM but succeeds with          

 Distill GHZ state with certainty for                      (                         )



GHZ network + CZ   cluster state

 Measurement of two virtual qubits enacts
Controlled-Z gate btwn nbr center particles



GHZ network + CZ   cluster state

 Cluster state (universal for QC) is created (for )
on honeycomb lattice with unit probability



Zero temperature (δ,dz near -1)

Ferro-like
(degenerate) AKLT-like(gapped) AKLT-like(gapped)

 no phase transitiion

 For                                         , can filter out a GHZ 
with probability > percolation threshold 

 Connected 2D cluster state on faulty honeycomb lattice



Finite T diagram (T=0 understood)

 Model exactly solvable  GHZ fraction at finite T is known

Model 1 (2D) Model 2 (2D)

useful
for QC

not useful
for QC

 Use techniques from fault-tolerant quantum computation

useful
for QC

not useful
for QC

 to locate temperature where error rate = FT threshold
 transition temperature



3D is more robust
Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC

 Can create 3D cluster state  topological protection for QC
(Measurement-based version of so-called surface code QC)

[Raussendorf,Harrington,Goyal ‘06]

[Raussendorf, Harrington, PRL (2007)]



Summary
 Introduce notion of “computational phase” via resource states 

in measurement-based quantum computation

 Explicitly construct two model spin-3/2 Hamiltonians
 QC phase diagram of  T-vs. δ (or dz) 

 Transitions in quantum computational power need NOT
coincide with transitions in phases of matter

Main Refs.:  Li, Browne, Kwek, Raussendorf & Wei, PRL 107,060501 (2011)
Wei, Li & Kwek, PRA 89,0502315 (2014)

Related Refs.:  Wei, Affleck,Raussendorf, PRL 106,070501 (2011)
Wei, PRA 88,062307 (2013); Wei et al, PRA 90, 042333 (2014)
Garcia-Saez,Murg,Wei, PRB 88, 245118 (2013)
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One-qubit gate

21 3 4 5

input output

Observables:

Measurement
pattern:



CNOT gate

Measurement pattern

21 3 4 6 75

8

109 11 12 14 1513

control in control out

target in target out

 simulates CNOT (via entanglement between wires)



Generating a cluster state

 Example: 2D cluster state on square lattice



Creating a cluster state
 After POVM on center particles,

each block is an effective 4-qubit GHZ state

Effective joint measurement on the 
two virtual qubits (e.g. Bell-state measurement
or  in 2-qubit cluster state basis)

 Perform measurement on the bond particles

Induce control-phase gate between
two center qubits (up to Z gates)

Give rise to a cluster state on
a hexagonal (honeycomb) lattice



Error analysis
[Wei, Li, Kwek, PRA ‘14] 



Error analysis

 As goal is to investigate intrinsic property of quantum
computational power, assume error caused by finite T
(i.e. assume perfect measurement)

 2D: transition at  3D:

[Wei, Li, Kwek, PRA ‘14] 



Computational phases
Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC

2D:

3D:

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC



Fault tolerance at 3D 

 Builds upon Raussendorf-Harrington-Goyal scheme
on 3D cluster state [Ann of Phys  321, 2242 (2006)]

 Error threshold: 1.4% for depolarizing error and
0.11 % (later improved to 0.75%) on preparation-, 
gate-, storage-, and measurement errors

[Raussendorf & Harrington, PRL (2007)]


