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2D cluster state
 Created by applying CZ gates to each pair with edge

[Raussendorf&Briegel ‘01]

 Ground state of 5-body Hamiltonian

vX ZZ

Z

Z

X,Y,Z Pauli matrices

(except boundary spins)



Resource for universal quantum computation
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 Carve out entanglement structure 
by local Z measurement Z
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement along each bridge simulates two-qubit gate (CNOT)

Universal measurement-based quantum computation (MBQC)

[Raussendorf&Briegel ‘01]



Other states for universal QC?

 Other 2D graph/cluster states* on regular lattices: 
triangular, honeycomb, kagome, etc.

 A few other states from tensor network construction
and TriCluster state

[Van den Nest et al. ‘06]

[Gross & Eisert ‘07, ‘10]

 So far still no complete characterization for resource states

 The first known resource state is the 2D cluster state

[Chen et al. ’09]

 Family of 2D Affleck-Kennedy-Lieb-Tasaki states [Wei, Affleck & Raussendorf ’11&12; 
Miyake ’11; Wei ‘13, Wei, 

Haghnagadar &Raussendorf ‘14]



Resource states from ground states? 

 Unique ground states of certain gapped Hamiltonians?

 If so, create resources by cooling!

 Desire simple and short-ranged (nearest nbr) 2-body    
Hamiltonians

[Nielsen ‘06] Cluster states require few-body (e.g. 5-body) interactions!

 AKLT states are ground state of two-body interacting Hamiltonians
(possibly gapped)

 What about thermal states for quantum computation?

useful?

[Li,Browne,Kwek,Raussendorf &Wei ‘11]

[AKLT ’87,88] [Garcia-Saez,Murg,Wei ’12]



Main motivations here

 Universal resource states from certain phases of matter?

 Browne et al.--- percolation
 Bartlett et al. --- (1) Cluster in B field; (2) deformed AKLT
 Murao et al. --- interacting cluster at finite T
 Li et al. --- thermal states for QC

 it’s a difficult question in general, but some examples:

 System parameter vs. temperature “phase diagram”
in terms of universal quantum computation?

 Can we can characterize regions in the phase diagram by
the quantum computational power of the equilibrium 
states?



Some examples why transitions 
in quantum computational 

power make sense…



Cluster state and percolation

 Cluster-state at faulty square lattice:

poccupy : system parameter QC possible if poccupy > pperco.threshold

[Browne, Elliot, Flammia, Merkel, Miyake,Short ‘08]
cf [Gross, Eisert, Schuch,Perez-Garcia rowne, ‘07]

 Transition in quantum computational power



Cluster phase?
 Doherty and Bartlett: Cluster Hamiltonian in B field

with known phase transition at |B|=1

 They argue that the phase |B|<1 is characterized 
by fidelities of universal gates

[Doherty, Bartlett ‘09]

 transition in quantum computational power 

 can be mapped to 

[Doherty, Bartlett ‘09]

 Question: what about finite temperature T?



Deforming AKLT state

 Spin-3/2 AKLT state on honeycomb 
lattice is universal [Wei, Affleck & Raussendorf ’11; 

Miyake ’11]

 Deformed AKLT also universal (in a range of deformation) 

 Transition to non-universal coincides
with transition to Neel order 

[Darmawan,Brennen,Bartlett ‘12]

NeelAKLT-like

6.46

 Q: finite T?



Interacting cluster Hamiltonian at finite T

 Gate fidelity shows a transition at classical Ising transition Tc

vX ZZ

Z

Z


(mapped to classical Ising
by CZ)

[Fujii, Nakata, Ohzeki, Murao ‘13]

 Q: can we add local field
to vary Hamiltonian? 



Thermal states as resource

[Li, Browne, Kwek, Raussendorf, Wei ‘11]

 2D & 3D spin Hamiltonians

 Thermal states can be used 
for universal QC, if T/∆ is such 
that error below threshold

Q: can we vary some system 
parameter or local field?



Goal: Phase diagram with temperature 
and other system parameter

 Models illustrated:

 Varying both T & some system parameter?
 difficult problem: Hamiltonian not solvable in general

 Percolation: vary probability only

 Cluster with B field and deformed AKLT: only at zero T

 Interacting cluster at finite T: mapped to classical Ising

 Thermal states for universal QC: Hamiltonian Heisenberg-like



Goal: Phase diagram of quantum computational power

useful
for QC

not useful
for QC

[Wei,Li,Kwek ‘14]

 Another question: Does transition in quantum computational power 
necessarily coincide with transition in the phase of matter?

 Will construct two models to investigate these
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First: Toy model
 3 spin-1/2 at sides and 1 spin-3/2 at center u

1’

2’

3’

2

31

u Mathematically project joint state of (1’2’3’) to their
symmetric subspace (i.e. virtual to physical)



Spin 3/2 and three virtual qubits
 Addition of angular momenta of 3 spin-1/2’s 

 The four basis states in the symmetric subspace

Symmetric subspace



Toy model: building block
 3 spin-1/2 at sides and 1 spin-3/2 at center u

 Form an AKLT-like state:

1’

2’

3’

2

31

u

 Unique ground state of Projector to total S=2  joint subspace of spins i and u

=

GHZ state:



Toy model Hamiltonians

2

31

u

 Exactly diagonalizable
 Finite energy gap = 1

spin 3/2

spin 1/2

 Next: Allow the Hamiltonians to vary



Toy model is for 4 spins.
Q: how do we scale to 2D or 3D structure 

for universal quantum computation? 

Ans. Use toy model as a building block
 Patch up 2D or 3D structure



2D or 3D spin models
 Use this as a building block to construct 

spin systems with a spectral gap

Regard two bond qubits as a spin-3/2

: bond particle

: center particle

 The spectral property is inherited from toy model



2D or 3D structure
 Use this as a building block to construct 

spin systems with a spectral gap
2

31

u



Two spin models
2

31

Ferro-like
(degenerate)

AKLT-like(gapped)
AKLT-like(gapped)
 no phase transitiion

1st-order phase transition

 No transitions at finite T (free energy analytic)

u



Two spin models
2

31

Ferro-like
(degenerate)

AKLT-like(gapped)
AKLT-like(gapped)
 no phase transitiion

1st-order phase transition

u

 What about transitions in quantum computational power?
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Computational phase (in 2D)

 How to understand the computational phase 
in δ (dz) –vs.-T plane? 

Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC



Zero temperature
2

31

Ferro-like
(degenerate) AKLT-like(gapped) AKLT-like(gapped)

 no phase transitiion

u

 For                      , can filter out a GHZ 
with probability=1 via generalize measurement (next slides)

 Wavefunction:



Distill a four-spin GHZ state (@ δ=dz=0)

 Central spin has 4 levels: how to reduce to 2 levels?

 Use projection?

1’

2’

3’

2

31

u

Pz

 What if the projection does not succeed?



Distill a four-spin GHZ state (@ δ=dz=0)

 Central spin has 4 levels: how to reduce to 2 levels?

 Use projection?

1’

2’

3’

2

31

u

Pz

 What if the projection does not succeed?



Generalized measurement (POVM)

 POVM outcome au={x,y, or z} is random

 Three elements satisfy: 

[Wei,Affleck & 
Raussendorf ’11;

Miyake ‘11]

 au : new quantization axis

 state becomes 

 effective 2-level system

u: site index for 
center particles

 x and y axes
are also good : 



1’

2’

3’

2

31

u

 POVM outcome au={x,y.z} indicates a randomly chosen 
quantization axis and the state becomes

 Re-label states @ site u: 

Post-POVM state is a GHZ state:

Distill a four-spin GHZ state (@ δ=dz=0)



1’

2’

3’

2

31

u

 Use combination of filtering D(a) and POVM F’s

 Percolation consideration for cluster state

Distill a four-spin GHZ state (@ δ=dz≠0)

1/a

 For                  , need a different POVM but succeeds with          

 Distill GHZ state with certainty for                      (                         )



GHZ network + CZ   cluster state

 Measurement of two virtual qubits enacts
Controlled-Z gate btwn nbr center particles



GHZ network + CZ   cluster state

 Cluster state (universal for QC) is created (for )
on honeycomb lattice with unit probability



Zero temperature (δ,dz near -1)

Ferro-like
(degenerate) AKLT-like(gapped) AKLT-like(gapped)

 no phase transitiion

 For                                         , can filter out a GHZ 
with probability > percolation threshold 

 Connected 2D cluster state on faulty honeycomb lattice



Finite T diagram (T=0 understood)

 Model exactly solvable  GHZ fraction at finite T is known

Model 1 (2D) Model 2 (2D)

useful
for QC

not useful
for QC

 Use techniques from fault-tolerant quantum computation

useful
for QC

not useful
for QC

 to locate temperature where error rate = FT threshold
 transition temperature



3D is more robust
Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC

 Can create 3D cluster state  topological protection for QC
(Measurement-based version of so-called surface code QC)

[Raussendorf,Harrington,Goyal ‘06]

[Raussendorf, Harrington, PRL (2007)]



Summary
 Introduce notion of “computational phase” via resource states 

in measurement-based quantum computation

 Explicitly construct two model spin-3/2 Hamiltonians
 QC phase diagram of  T-vs. δ (or dz) 

 Transitions in quantum computational power need NOT
coincide with transitions in phases of matter

Main Refs.:  Li, Browne, Kwek, Raussendorf & Wei, PRL 107,060501 (2011)
Wei, Li & Kwek, PRA 89,0502315 (2014)

Related Refs.:  Wei, Affleck,Raussendorf, PRL 106,070501 (2011)
Wei, PRA 88,062307 (2013); Wei et al, PRA 90, 042333 (2014)
Garcia-Saez,Murg,Wei, PRB 88, 245118 (2013)





Supplementary slides



One-qubit gate

21 3 4 5

input output

Observables:

Measurement
pattern:



CNOT gate

Measurement pattern

21 3 4 6 75

8

109 11 12 14 1513

control in control out

target in target out

 simulates CNOT (via entanglement between wires)



Generating a cluster state

 Example: 2D cluster state on square lattice



Creating a cluster state
 After POVM on center particles,

each block is an effective 4-qubit GHZ state

Effective joint measurement on the 
two virtual qubits (e.g. Bell-state measurement
or  in 2-qubit cluster state basis)

 Perform measurement on the bond particles

Induce control-phase gate between
two center qubits (up to Z gates)

Give rise to a cluster state on
a hexagonal (honeycomb) lattice



Error analysis
[Wei, Li, Kwek, PRA ‘14] 



Error analysis

 As goal is to investigate intrinsic property of quantum
computational power, assume error caused by finite T
(i.e. assume perfect measurement)

 2D: transition at  3D:

[Wei, Li, Kwek, PRA ‘14] 



Computational phases
Model 1 Model 2

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC

2D:

3D:

useful
for QC

not useful
for QC

useful
for QC

not useful
for QC



Fault tolerance at 3D 

 Builds upon Raussendorf-Harrington-Goyal scheme
on 3D cluster state [Ann of Phys  321, 2242 (2006)]

 Error threshold: 1.4% for depolarizing error and
0.11 % (later improved to 0.75%) on preparation-, 
gate-, storage-, and measurement errors

[Raussendorf & Harrington, PRL (2007)]


