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Plan of the talk:
1. Review of Bell’s theorem and Gisin’s theorem
2. A simple test of local realism by EQUALITY
3. Numerical illustration
4. Brief sketch of the derivation of new criterion
in local hidden-variables models.
5. Conclusion
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We start with operator B (Cirel’son)

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ,
where σ stands for the Pauli matrix and a, a′, b, b′

are 3-dimensional unit vectors. Bounded by

||B|| ≤ |b + b′| + |b − b′| ≤ 2
√

2.

Bell’s theorem:

Local hidden-variables model in d = 4 (local re-
alism) gives CHSH inequality

|⟨ψ|B|ψ⟩| ≤ 2

for any a, a′, b, b′.
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Gisin’s theorem:N. Gisin, PLA154, 201 (1991)

If the state |ψ⟩ is an entangled pure quantum
state, one can always achieve

|⟨ψ|B|ψ⟩| > 2

by suitably choosing a, a′, b, b′.

Contraposition of Gisin’s theorem:
If

|⟨ψ|B|ψ⟩| ≤ 2

for any a, a′, b, b′, the state |ψ⟩ is separable if
one considers only pure states.
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Combination of Bell’s theorem and the contrapo-
sition of quantum mechanical Gisin’s theorem:

Bell’s theorem:
Local realism gives CHSH inequality

|⟨ψ|B|ψ⟩| ≤ 2

for any a, a′, b, b′, and

Contraposition of Gisin’s theorem:
If

|⟨ψ|B|ψ⟩| ≤ 2

for any a, a′, b, b′, the state |ψ⟩ is separable,
if one considers only pure states.
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One thus concludes:
Local realism can describe only separable pure
quantum states.

The local realism is thus quantified by Equality,

G(a,b)/4

≡ ⟨ψ|P (a) ⊗ P (b)|ψ⟩
−⟨ψ|P (a) ⊗ 1|ψ⟩⟨ψ|1 ⊗ P (b)|ψ⟩ = 0

for any two projection operators P (a) and P (b).

Test of local realism by the deviation ofG(a,b)
from G(a,b) = 0.
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Test of Local Realism:

Categorize three different cases:
(i) Quantum mechanics.

⟨ψ|B|ψ⟩QM

= ⟨ψ|a · σ ⊗ b · σ|ψ⟩ + ⟨ψ|a · σ ⊗ b′ · σ|ψ⟩
+⟨ψ|a′ · σ ⊗ b · σ|ψ⟩ − ⟨ψ|a′ · σ ⊗ b′ · σ|ψ⟩

which assumes values |⟨ψ|B|ψ⟩QM | ≤ 2
√

2.

7



(ii) Bell-CHSH inequality (local realism).

|⟨ψ|B|ψ⟩CHSH |
= |⟨ψ|a · σ ⊗ b · σ|ψ⟩ + ⟨ψ|a · σ ⊗ b′ · σ|ψ⟩
+⟨ψ|a′ · σ ⊗ b · σ|ψ⟩ − ⟨ψ|a′ · σ ⊗ b′ · σ|ψ⟩|
≤ 2,

and this is valid for any state |ψ⟩.

(iii) Our proposed equality. Local realism de-
scribes only separable states and thus

⟨ψ|a · σ ⊗ b · σ|ψ⟩
= ⟨ψ|a · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b · σ|ψ⟩,
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and valid for any choice of a and b, including

⟨ψ|a · σ ⊗ b′ · σ|ψ⟩
= ⟨ψ|a · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b′ · σ|ψ⟩,

⟨ψ|a′ · σ ⊗ b · σ|ψ⟩
= ⟨ψ|a′ · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b · σ|ψ⟩,

⟨ψ|a′ · σ ⊗ b′ · σ|ψ⟩
= ⟨ψ|a′ · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b′ · σ|ψ⟩.

By asking these relations, one can test if a given
state |ψ⟩ is described by local realism.
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We here recall the well-known fact in quantum
mechanics that

−2 ≤ ⟨ψ|B|ψ⟩QM ≤ 2

for any separable state |ψ⟩ = |ψ1⟩|ψ2⟩.

Because of this fact, our criterion automatically
implies CHSH, while CHSH for all a, a′, b, b′

implies our criterion due to Gisin’s theorem.
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In the analysis of actual experiments, however,
we consider only a limited set of parameters a, a′,
b, b′, thus CHSH and our criterion generally give
different constraints.

CHSH can test local realism by looking at in-
equality, while our criterion can test local realism
by looking at equality.

|⟨ψ|B|ψ⟩QM | > 2 or G(a,b) ̸= 0 negates
local realism.
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Any state

ψ = α|+⟩1|−⟩2 − β|−⟩1|+⟩2,
with αβ ̸= 0 is excluded by local realism.
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Numerical Illustration:

We consider the generic entangled state

ψ = α|+⟩1|−⟩2 − β|−⟩1|+⟩2,
where |±⟩1 and |±⟩2 stand for the eigenstates of
σ1

z and σ2
z, respectively.

Both α and β are real and positive with α2 +
β2 = 1.
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Figure 1: Inseparable state and CHSH inequality: Let a = (sin θ, 0, cos θ), b =
(sinϕ, 0, cosϕ) and similarly for a′ and b′ by choosing y-axis in the direction of two separated
parties. We performed numerical tests for three cases, namely, A: (θ, ϕ, θ′, ϕ′) = (π

4
, π

2
, 3π

4
, 0), B:

(π
3
, π

8
, π

4
, π

6
), and C: (π

6
, 3π

4
, π, 0). The lines with square, filled circle, and diamond, respectively,

indicate ⟨ψ|B|ψ⟩QM in the case of A, B and C. The dashed lines stand for CHSH inequality,
−2 ≤ ⟨ψ|B|ψ⟩CHSH ≤ 2.

We plot

⟨ψ|B|ψ⟩QM

= ⟨ψ|a · σ ⊗ b · σ|ψ⟩ + ⟨ψ|a · σ ⊗ b′ · σ|ψ⟩
+⟨ψ|a′ · σ ⊗ b · σ|ψ⟩ − ⟨ψ|a′ · σ ⊗ b′ · σ|ψ⟩.
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Figure 2: Inseparable state and our proposed criterion: We use the same set of parame-
ters as in Fig. 1. The lines with square, filled circle, and diamond indicate G(a,b) and G(a,b′)
for the case of A, B and C in Fig. 1, respectively. The dashed lines stand for the prediction of
local realism.

We plot

G(a,b)

≡ ⟨ψ|a · σ ⊗ b · σ|ψ⟩
−⟨ψ|a · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b · σ|ψ⟩,

for the same set of parameters as in Fig.1.
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The experimental setups close to the test of our
criterion

G(a,b)/4

≡ ⟨ψ|P (a) ⊗ P (b)|ψ⟩
−⟨ψ|P (a) ⊗ 1|ψ⟩⟨ψ|1 ⊗ P (b)|ψ⟩

= 0

have in fact been used in the past by Freedman
and Clauser in 1972, and by Aspect, Grangier
and Roger in 1981. Those experiments are based
on the measurement of the transverse linear po-
larization of the photon.
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In terms of measured quantities of Aspect,G(φ) =
G(a,b) is written as

G(φ) = 4[
R(φ)

R0
− R1R2

R2
0

]

= (0.971 − 0.029)(0.968 − 0.028)0.984 cos 2φ

where φ stands for the angle between a and b.
The quantities R(φ), R1, R2 and R0 are defined
in eq.(2) of Aspect, and the numerical factors in
front of cos 2φ are also given there.

A. Aspect et al., PRL 47, 460 (1981).(before bet-
ter known exp. in ’82)
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Note that for the maximally entangled state in
quantum mechanics, we have

G(a,b) = − cosφ

for the spin, while we have

G(a,b) = cos 2φ

for the photon. For the ideal measurement, the
coefficient of cos 2φ is unity.

We show this quantum mechanical prediction
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Figure 3: Aspect’s experiment and our proposed criterion: The solid line represents the
quantum mechanical prediction of G(φ) corresponding to Aspect’s experimental setup in 1981.
The dashed line represents the prediction of local realism.

Fig.3 shows that our criterion is very effective
and provides a decisive test of the deviation of
local realism from quantum mechanics.
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It should be emphasized that Aspect et al. have
not discussed figure 4 in their paper, which cor-
responds to Fig.3 in the present case, as a test of
local realism; instead they discussed only the con-
ventional CHSH inequality as a test of local real-
ism. Also, Bell himself was not aware of ”Gisin’s
theorem” around 1990.

This shows that our criterion is not universally
recognized as a decisive prediction of local real-
ism.
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Recently, more and more sophisticated tests of
Bell-CHSH inequalities have been performed. It
should be interesting to look at those experiments
from the point of view of our criterion illustrated
in Fig.3; simply stated, any entangled state negates
local realism, which is the original idea of Ein-
stein.

Since our criterion is mathematically much sim-
pler, it is expected that it may avoid some of the
technical complications (experimental loopholes)
involved in the tests of Bell-CHSH inequalities.

21



Sketch of Direct Derivation of our Cri-
terion:

⟨ψ|a · σ ⊗ b · σ|ψ⟩

=

∫
ρ(λ1, λ2)dλ1dλ2a(ψ, λ1)b(ψ, λ2)

with dichotomic variables a(ψ, λ1) and b(ψ, λ2),
and we recover the more common hidden-variables
model if one sets

ρ(λ1, λ2) = ρ(λ1)δ(λ1 − λ2).
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We have quantum mechanical relations

⟨B⟩
= ⟨a · σ ⊗ (b + b′) · σ⟩ + ⟨a′ · σ ⊗ (b − b′) · σ⟩
= ⟨a · σ ⊗ b · σ⟩ + ⟨a · σ ⊗ b′ · σ⟩
+⟨a′ · σ ⊗ b · σ⟩ − ⟨a′ · σ ⊗ b′ · σ⟩.

If one moves to the hidden-variables represen-
tation from the last expression, one obtains the
standard |⟨B⟩| ≤ 2 by noting,

a(ψ, λ1)b(ψ, λ2) + a(ψ, λ1)b
′(ψ, λ2)

+a′(ψ, λ1)b(ψ, λ2) − a′(ψ, λ1)b
′(ψ, λ2) = ±2
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On the other hand, if one moves from the first
relation

|b + b′|
∫
ρ(λ1, λ2)dλ1dλ2a(ψ, λ1)b̃(ψ, λ2)

+ |b − b′|
∫
ρ(λ1, λ2)dλ1dλ2a(ψ, λ1)b̃

′(ψ, λ2),

one cannot prove |⟨B⟩| ≤ 2 in general.

Here, unit vectors b̃ ≡ (b + b′)/|b + b′| and
b̃′ ≡ (b − b′)/|b − b′| for non-collinear b and
b′.
Note that this operation is consistent with as-
sumed locality.

24



To achieve the conventional CHSH |⟨B⟩| ≤ 2
uniquely, one needs to satisfy the linearity of the
probability measure

⟨a · σ ⊗ (b + b′) · σ⟩
= ⟨a · σ ⊗ b · σ⟩ + ⟨a · σ ⊗ b′ · σ⟩.

We then derive

⟨ψ|a · σ ⊗ b · σ|ψ⟩

=

∫
ρ1(λ1)dλ1a(ψ, λ1)

∫
ρ2(λ2)dλ2b(ψ, λ2).
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We then have

G(a,b)

≡ ⟨ψ|a · σ ⊗ b · σ|ψ⟩
−⟨ψ|a · σ ⊗ 1|ψ⟩⟨ψ|1 ⊗ b · σ|ψ⟩

=

∫
ρ1(λ1)dλ1a(ψ, λ1)

∫
ρ2(λ2)dλ2b(ψ, λ2)

−
∫
ρ1(λ1)dλ1a(ψ, λ1)

∫
ρ2(λ2)dλ2b(ψ, λ2)

= 0,

for any a and b.
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